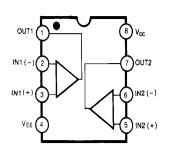
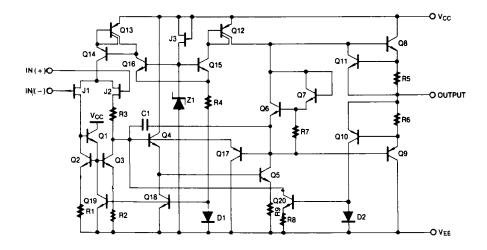

DUAL OPERATIONAL AMPLIFER


The LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides with bandwidth, low input bias currents and offset currents.

FEATURES

- Internally trimmed offset voltage: 10mV
- Low input bias current: 50pA
- Wide gain bandwidth: 4MHz
- High slew rate: 13V/μs
- High Input impedance: $10^{12}\Omega$


BLOCK DIAGRAM

ORDERING IN FORMATION

Device	Package	Operating Temperature
LF353N	8 DIP	
LF353M	8 SOP	0 ~ + 70°C
LF353S	9 SIP	

SCHEMATIC DIAGRAM (One Section Only)

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit	
Power Supply Voltage	Vcc	±18	V	
Differential Input Voltage	V _{I(DIFF)}	30	V	
Input Voltage Range	VI	±15	V	
Output Short Circuit Duration		Continuous		
Power Dissipation	P _D	500	mW	
Operating Temperature Range	T _{OPR}	0 ~ +70	°C	
Storage Temperature Range	T _{STG}	-65 ~ +150	°C	

ELECTRICAL CHARACTERISTICS

(V_{CC} =+15V, V_{EE}= -15V, T_A =25 °C, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
t O#t \/- t	V _{IO}	R _s =10KΩ			5.0	10	\/
Input Offset Voltage			$0 ^{\circ}\text{C} \leq T_{A} \leq +70 ^{\circ}\text{C}$				mV
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$	$R_S=10K\Omega$	$0 ^{\circ}\text{C} \leq T_{A} \leq +70 ^{\circ}\text{C}$		10		μV/°C
Input Offset Current	lio				25	100	pА
input onset ourient			$0 {}^{\circ}\text{C} \leq T_{A} \leq +70 {}^{\circ}\text{C}$			4	nA
Input Bias Current	1				50	200	pА
Input Bias Current	I _{BIAS}		$0 {}^{\circ}\text{C} \leq T_{A} \leq +70 {}^{\circ}\text{C}$			8	nA
Input Resistance	R _I				10 ¹²		Ω
	G∨	$V_{O(P-P)} = \pm 0V$		25	100		V/mV
Large Signal Voltage Gain		$R_L = 2K\Omega$	$0 ^{\circ}\text{C} \leq T_{A} \leq +70 ^{\circ}\text{C}$	15			V/INV
Output Voltage Swing	V _{O(P.P)}	$R_L = 10K\Omega$		±12	±13.5		V
Input Voltage Range	$V_{I(R)}$			±11	±15/-12		V
Common Mode Rejection Ratio	CMRR	R _s ≥10KΩ		70	100		dB
Power Supply Rejection Ratio	PSRR	R _s ≥10KΩ		70	100		dB
Power Supply Current	Icc				3.6	6.5	mA
Slew Rate	SR	G _V = 1			13		V/µs
Gain-Bandwidth Product	GBM				4		MHz
Channel Seperation	cs	f = 1Hz ~ 20Khz (Input referenced)		120	120		dB
Equivalent Input Noise Voltage	V _{NI}	$R_S = 100\Omega$ f = 1KHz		16	16		nV/√Hz
Equivalent Input Noise Current	I _{NI}	f = 1KHz		0.01	0.01		pA/√ ^{Hz}

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM
CoolFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.