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Preface 

The material offered to readers of Ihls book is based on literature sources and on a 
small part of the long-term research works of the authors in the area of autodynes 
and frequency-modulated continuous-wave (FMCW) radar. Most of the material 
was presented at the Radio Engineering Faculty of the Moscow Power Engineering 
Institute (Technical University) MPEI in lecture courses on "FMCW Radar," 
"Theory of Signal Processing," "Short-Range Radar Systems," "Transistor Auto- 
dynes," "Oscillation Theory in Radio Engineering," and "Oscillation Stability," 
and also at lectures, seminars, and scientific and techmcal conferences at industrial 
enterprises. 

We think that this book may he useful to students and postgraduate students of 
the appropriate radio engineering specialties, experts (engineers) in the field of 
radar who want to get acquainted with or are seriously engaged in the theory and 
development of FMCW radar and autodynes. We hope that it will be interesting to 
scientific officers and teachers of techmcal universities - specific experts in these 
subjects. 

Is it possible to design a radar using this book? Our long-term experience in 
teamwork with industry enables us to give a definite negative answer. This book 
contains only the fundamentals of the theory of FMCW radar and autodynes, while 
for their design it is necessary to have a set of additional data that is absent from 
this book, and we are not going to include it. At the same time, it is obvious that 
without knowing the fundamentals, it is, in general, impossible to design anything, 
and studying these fundamentals is necessary in any case. 

The book consists of two partts. Part I has been written by Dr. I. Komarov, and 
Part I1 by Dr. S. Smolsluy. Auxiliary sections of the book have been prepared by 
the authors jointly. 

Part I contains the fundamental theory of short-range FMCW radar, while 
Part I1 covers the theory of radiating autodynes. At first sight, such a combination 
may seem strange, but we should not jump to conclusions. We note that radiating 
autodynes, by the principle of thcir operation, may work only within the structure 

xiii 
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of radars, and most effectively in short-range FMCW radars. The experts on 
FMCW radar, as a rule, are not familiar with autodyne theory. If they apply an 
autodyne for development of a radar they are interested only in its technical char- 
acteristics rather than in theoretical considerations. Experts in autodynes often 
know little or nothing about FMCW radar theory and methods of signal process- 
ing. That is why the simple and unexpected idea came to us: why not present mate- 
rials on these two subjects in one book devoted to the basics of FMCW radar? 
Then the expert interested in FMCW radar may get acquainted with autodyne the- 
ory and the expert in autodynes can correspondingly get acquainted with the the- 
ory of FMCW radar. The reader will judge how effective this combination has 
been. 

During preparation of the book we followed to a certain degree an aphorism 
of Bertrand Russell: "A book can be either clear, or strict, but it is impossible to 
combine both these requirements." Therefore, in Part I preference is given to clar- 
ity, but not to the detriment of rigor, and in Part I1 the preference is given to rigor, 
but not to the detriment of clarity, or so it seems to us. 

The material of Part I is written according to the principle "from simple to 
more complex." Each chapter is like a step on a ladder, on which the reader rises. 
Chapter 1 is intended for those readers who may have heard of FMCW radars, but 
have no clear idea about their performance or areas of application. In the begin- 
ning of the chapter a brief history of the origin and fiuther development of FMCW 
radar is given. Then examples of FMCW radar applications are given. Some pre- 
sent examples are well known: fust, radio altimeters and meters of level of liquid 
or powderllke products in closed tanks. Other examples include possible applica- 
tions of FMCW radar such as navigational radar, precision range meters for fixed 
or slowly moving targets, meters of very small motions, instruments for measuring 
minute changes of range (hundredths of a millimeter) as noncontact meters of vi- 
brations and pressure of a gas or liquid, and others. 

Chapter 2 is the basis for all further material of Part I. The basic block dia- 
grams of FMCW radar are considered and expressions for transmitted, reflected, 
and converted signals are deduced. The last term refers to the signal at the output 
of the RF mixer. In other literature it is frequently called an intermediate fre- 
quency signal (by analogy to the intermediate fi-equency signal in a superhetero- 
dyne receiver), and also the range measuring signal. A feature of the analysis 
given in this chapter is that the converted signal is considered as the product of the 
current difference of the phases, instead of as a product of the difference of instan- 
taneous frequencies of transmitted and reflected signals. This method of analysis is 
exact and general, and it enables us to obtain most simply the necessary relation- 
ships, in particular, the basic relationships for the spectrum of the converted signal. 
It also allows us to explain very simply some features of the converted signal. If 
desired or necessary it is easy to proceed to frequency interpretations. 

The material in Chapter 2 receives fither development in Chapter 3, where 
parameters and characteristics of the converted signal are examined for the most 
widely used types of periodic frequency modulation: sinusoidal, double sinusoidal, 
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and various types of linear modul~ion: symmetrical, asymmetrical, and nonisosce- 
les sawtooth. The greatest attention is given to the analysis of the converted signal 
with asymmetrical sawtooth modulation because this modulation in many cases 
obtains the best characteristics of FMCW radar. 

Because modem electronic component technology makes possible the appli- 
cation of a frequency synthesizer ;is an FM oscillator, the features of the converted 
signal for discrete linear (stepped) modulation are examined in this chapter. At the 
end of the chapter we estimate tht: influence on parameters of the converted signal 
of nonlinearity in the transmitter nlodulation characteristic. 

Chapters 2 and 3 form the basis for the subsequent development. 
In Chapter 4 we consider so-called integrated methods of converted signal 

processing. The term "integrated" may be not absolutely successful, but no other 
term has been devised. Integrated methods of converted signal processing are de- 
fined to be those in which all signal parameters (i.e., amplitude, frequency, and 
phase) are utilized for processing. The possible methods of signal processing are 
first briefly considered. A significant part of the material in this chapter (-20%) is 
devoted to consideration of the influence on radar receiver operation of parasitic 
amplitude modulation of the transmitted signal and several adequately effective 
ways to reduce this influence. Then we consider methods of stabilization of fre- 
quency deviation and linearization of the transmitter modulation characteristic. In 
Section 4.4, "Frequency Processrng of the Converted Signal," we consider long- 
known processing methods as well as rather new methods. Descriptions of the ear- 
lier methods are given for completeness and to avoid sending the reader to old 
references that may be almost inaccessible. Here we describe the following: the 
method of range measurement by calculation of the number of zeros of the con- 
verted signal for the modulation period, and the method of using the converted 
signal frequency deviation with sr.nusoida1 modulation. In the following section we 
consider methods of range measurement based on measurement of the converted 
signal's instantaneous frequency, the fixing of this frequency and of the converted 
signal's frequency deviation. The chapter concludes with a section in which we 
analyze opportunities of range measurement by measurement of the converted 
signal's phase shift during the modulation period. We show that this approach al- 
lows us to measure range with a margin of error no more than tenths of one per- 
cent, using technically achievable deviations of transmitted signal frequency. 

In Chapter 5 ,  we consider methods of converted signal processing based on 
exploiting the characteristics and parameters of its spectrum. We have seen from 
long-term experience of discussing these questions with colleagues and students, 
the greatest difficulty in studying this material is the necessity of representing a 
spectral picture in frequency-range coordinates. For this reason, we consider first 
the dependence of separate spectral components on range and then the three- 
dimensional spectral picture in voltage-frequency-range coordinates. Further, on 
the basis of this analysis, theoreaical and real range resolutions are calculated. In 
development of this question, th12 range resolution is calculated for application of 
weighted signal processing, and the physical essence of weighted processing is 
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explained in detail. The natural continuation of this material is radar scan of range. 
Various ways of creating the physical spectrum analyzer of the converted signal, 
and such important parameters of the analyzer as minimal necessary analysis time, 
are considered. As in Chapter 4, we describe one of the possible processing meth- 
ods with which the normal operation of the receiver is ensured even when the 
parasitic amplitude modulation signal is larger than the converted signal. At the 
end of the chapter, various methods of processing the separate spectral compo- 
nents of the converted signal are presented. Here it is worth noticing the sections 
in which we discuss opportunities for applying an FM signal instead of multi- 
frequency signals, and methods of using phase relationships. 

Part I1 is devoted first to simple and compact RF devices, called autodynes, 
self-mixing oscillators, or self-generating mixers by different authors and different 
scientific schools. In essence, such a cascade is a very complex device consisting 
of a self-oscillatory system connected by a reciprocal circuit to a transceiving an- 
tenna. This RF cascade combines the functions of generating an RF transmission 
with specific characteristics, radiating it from the antenna, receiving the signal 
reflected from the target (the measured object) to the same antenna, and generating 
the response to this time-delayed reflected signal, whose amplitude may be small 
or large. 

The difficulties of combining all these functions, and the essentially nonlinear 
mode of autodyne operation necessary for generation of the transmission and pro- 
cessing of the converted reflected signal, together with the complexity of active 
semiconductor RF elements and microwave oscillatory systems, also introduce 
complexity in the theoretical analysis of these devices and the significant interest 
of researchers in them. The resulting set of dissertations on this subject is pro- 
tected now (at least, in Russia). Engineers are interested in autodynes because 
these devices are simple to produce, extremely small-sized and cheap for mass 
production, and require only one antenna without expensive microwave duplexing 
devices. Also, as nonlinear devices, autodynes allow us to offer nonstandard cir- 
cuit choices, for example, distributed autodynes with power addition, noise-proof 
autodynes with various types of frequency modulation, autodynes that are well 
matched to nonstandard antennas, and many others. 

What method of description of autodyne FMCW radar characteristics is used 
in Part II? 

Very often in Russian and Western scientific literature the researchers try a 
simple approach: to find very simple treatments of autodyne processes by resorting 
to already generated concepts from the theory of other devices. It is possible to 
find many such examples. One of the first (pioneer) publications on autodynes by 
American authors R. D. Huntoon and B. G. Miller (Electronics, November 1945) 
examines the autodyne signal as a reaction to varying loading. Other models of the 
autodyne sometimes postulate a mixer with fixed heterodyne signal amplitude or a 
synchronized oscillator transferred in the beating mode. Thus, it is possible to try 
to explain the elementary processes of an autodyne, but as soon as real problems 
and practical questions are addressed, these treatments start to reveal serious 
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(sometimes basic) mistakes. It is necessary, even speaking about the fimdamentals 
of autodyne system operation, to address complex models and to climb into a theo- 
retical jungle. We recollect that one known Russian expert in radio engineering, 
during the defense of a dissertation, slightly paraphrased the words of philosophers 
about the electron to joke: "The autodyne is as inexhaustible as the atom." It seems 
to us that in this joke there is a ser lous element of truth. 

Nevertheless, we have decided not to hesitate because of such complexities, in 
order that the reader realize that simple explanations cannot simply be dismissed. 
If there is a problem in overloolung a complex question (for example, dynamic 
properties, speed of resynchronization, transients of the autodyne signal with fre- 
quency modulation, nonlinear disrortions in FM, etc.), it is necessary to prepare for 
serious slow work with difficult mathematical literature, with complex computer 
modeling packages, complex microwave experimental equipment, and all other 
"amenities" of modem engineering practice. 

In Chapter 6 (the first chapter of Part 11) we describe the method of symboli- 
cal abbreviated equations, which is widely used by Russian scientists, and which 
allows us easily and elegantly to analyze various processes in single-frequency 
self-oscillatory systems (systems without FM). To prepare the Western reader for 
ths  method the relatively simple case of the single-tuned oscillator is first consid- 
ered, for which it is shown how to obtain the initial simplified (so-called "abbrevi- 
ated") equations. A strict substantiation of the method is presented, and then the 
general abbreviated equations, the equations of the stationary mode, and the gen- 
eral characteristic equation describing local stability of oscillations are determined. 
Different examples are analyzed: the oscillator with fixed and automatic bias, the 
analysis of stationary modes with usual and dynamic oscillatory characteristics, the 
method of usual and dynamic hodographs, cases of soft and rigid excitation of 
self-oscillations are considered, and stability of modes and transients in the phase 
plane are analyzed. The general equations are obtained with sufficiently general 
preconditions on structure of the selective system and autobias circuits, and also 
on characteristics of inertial actil e elements. Consideration is given to the case of 
FM absence, and as far as is known to us, consideration of self-oscillatory systems 
by members of the American scientific schools is not usually carried out in a simi- 
lar way. 

Chapter 7 is devoted to absolutely new and original theoretical material: ap- 
plication of the symbolical abbreviated equation method to systems with variable 
parameters, in this case to autodjne systems with FM as used in FMCW radar. At 
first the previous general abbreviated equations are applied to the case of con- 
trolled multiport active elements, and then the case of frequency modulation is 
considered. A proven procedure for abbreviation of the equations and fast deriva- 
tion of the equations of specific systems is offered for different types of modula- 
tion. For simplification of underbtanding, simple and more complex examples are 
considered with sine wave, binauy, and triangular (symmetric and asymmetrical) 
types of frequency modulation. 
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Part I repeatedly emphasizes that the parasitic amplitude modulation (PAM) 
that always accompanies frequency modulation, not only in nonlinear systems but 
also in linear selective systems, is quite harmful to FMCW operation. In Chapter 8 
the question of PAM signal definition is considered in detail. We first consider the 
case of the FM oscillator for discrete frequency tuning, when there is a connection 
between oscillation amplitude and the mode for different variants of oscillator 
circuits, and then the case of modulation. We determine the parameters of the FM 
oscillator mode from the solution of the differential equations and then the in- 
phase and quadrature PAM components. The dependence of the PAM factor on 
the mode, on modulation frequency, and on circuit parameters of the oscillator are 
derived. The cases of frequency control with varicaps, both with smooth and sharp 
P-N junctions, are separately analyzed. 

Chapter 9 is devoted to the important practical question of modulation charac- 
teristic nonlinearity in the FM oscillator and to the issue of its linearization. The 
case of large change of frequency is examined first for smooth and sharp varicaps, 
and the dependence of modulation characteristic nonlinearity upon the factor of 
frequency overlapping is considered, first without and then with high-frequency 
voltage on the varicap. Nonlinear distortions of the modulating function are ana- 
lyzed, and factors of nonlinear distortions on the second and third harmonics are 
determined. Methods of linearizing the modulation characteristic using diode- 
resistive circuits, circuits with voltage detection, diode-transistor compensating 
circuits, and circuits of modulators with detuned circuits are considered. A tech- 
nique of engineering calculation of compensating circuits is developed. 

In Chapter 10, the basic theoretical chapter of autodyne process analysis, we 
derive the abbreviated equations for an autodyne with autobias, in which the auto- 
dyne signal may be described as due to autodyne self-detecting properties (in an 
autobias chain), or due to peak detection. The abbreviated equations are linearized 
for the case of a weak reflected signal and the linearized equivalent circuits of the 
autodyne are discussed. Autodyne transfer factors in voltage and current are de- 
termined, describing the effectiveness of transformation of the reflected signal into 
a useful autodyne signal. The form and spectral structure of the usehl detected 
signal and the RF autodyne signal are calculated. The cases of different types of 
frequency modulation are separately considered. The dependence of autodyne 
sensitivity upon its mode and circuit parameters are derived, and questions of 
mode optimization are discussed for low and high frequencies of the chosen 
transistor. 

By studying the material of h s  chapter, the reader will master a technique for 
approaching the analysis of a specific autodyne circuit and for defrning the sensi- 
tivity and potential of an FM radar. He or she will also understand the connection 
and necessary measures for simultaneous maintenance of high autodyne sensitiv- 
ity, reserve of mode stability, necessary autodyne output power, and required pa- 
rameters of frequency modulation. 

Chapter 11 is devoted to the specific and complex question of analysis of 
autodyne behavior in the presence of a large synchronizing signal (the useful 
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signal synchronizing a chain of interconnected autodynes, or a h d l  interfering 
signal at nearby frequency). The presence of this material in a book devoted to 
fundamentals of FMCW radar can be explained in the following way. We wanted 
to show that the general approach to autodyne equations may be used for the solu- 
tion of complicated problems. In this chapter fine and "superfine" methods of 
nonlinear fluctuation theory are u ~ e d  for consideration of the problem, allowing us 
to describe the large variety of modes and again to obtain closed formulas for cal- 
culation and analysis of autodyne transfer factors. These methods include synchro- 
nization theory, bifurcation theoly, analysis of dynamic systems behavior on cy- 
lindrical phase space, simultaneous influence on autodynes of the detuned syn- 
chronizing signal and a reflected signal, questions of maintenance not only of lo- 
cal, but also of global stability, the analysis of special points of the second order 
and their bifurcations, invariant integrated, and biphase surfaces. It appears that 
the usual assumption of failure of autodyne operation resulting from locking by 
strong interference is wrong: with a reasonable choice of mode it is possible not 
only to keep autodyne mode stability, but also to even increase sensitivity. 

This chapter will be complcx for the unprepared reader. It can be omitted 
when studying the fundamentals of FMCW radar. If the reader wishes to get seri- 
ously into autodyne subjects, the chapter will help guide him or her to become 
interested in a surprising and tivitful direction that may open the door to a new 
world of deep nonlinear phenomena. 

Certainly, many questions have not found reflection in the book. From among 
such questions applicable to P a ~ t  I, we do not discuss the theory of short-range 
FMCW radar operation with real (i.e., fluctuating) signals, noise and code modula- 
tions, digital processing of the converted signal, questions of short-range FMCW 
radar design, and a number of others. In Part I1 such questions as push-pull and 
ring autodynes, autodynes with stabilization of sensitivity, autodynes with delay 
lines, autodynes with axisymmrtric antennas and antenna arrays, multielement 
autodynes with power addition In space, laser autodynes, and many other issues 
are not mentioned. It is obvious that discussion of all these questions in one book 
is completely unrealistic. 

Perhaps the reader will be surprised at the scarcity of the references listed, 
given the large interest of scientists and engineers in this field. During preparation 
of the manuscript we met some difficulties with formation of ths  list. The fact is 
that, on the one hand, we tried to refer as little as possible to Russian texts and 
those of the former USSR, as thr:y are seldom translated into other languages and 
are inaccessible to the Western reader. On the other hand, for obvious reasons, the 
Western editions are remote from us, and it is very difficult for us to choose really 
pioneering works from numerouh articles and reports. It seems to us that the West- 
em reader who is seriously inte~ ested in this problem will find without effort the 
literature accessible through common information bases and can skillfilly compare 
approaches and results of different authors. 

More than 30 years of scientific research in described directions was per- 
formed by us, in close contact but in different departments of the Moscow Power 
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Engineering Institute (Technical University). In the Radio Receiver Department, 
Dr. Komarov supervised a large group of researchers, teachers, postgraduate stu- 
dents, and students involved in the problems of analysis and synthesis of FMCW 
radar structures, of theory and practical devices of signal processing, description 
of signals from interference, and so forth. Autodyne development was carried out 
in the Radio Transmitter Department under Dr. Smolskiy, supervising an equally 
large team of researchers, postgraduate students, and students. We also worked 
during all these years in close contact with many scientific research institutes and 
industrial design offices. Thus, the results obtained are the work of many, many 
people, and so it is completely impossible to list all their names. Unfortunately, 
many of them are already not with us, and we try to do justice to their memory. To 
all colleagues who are in good health, the authors express great gratitude for long 
years of teamwork. 

S. M. Smolskiy would like to express profound gratitude to the main teacher 
and the supervisor of hls studies since his student years: Dr. V. M. Bogachev, his 
instructor and friend on many scientific and vital questions, for all the advice given 
during 35 years of friendship and cooperation, and for all skills (that are actively 
used today), transferred by working with the youth. It is also a pleasure to recollect 
years of teamwork with colleagues and pupils Dr. V. G. Lysenko, Dr. S. A. Mo- 
rosanov, Dr. S. L. Artemenkov, Dr. V. A. Ivanov, Dr. S. N. Bikkenin, Dr. L. N. 
Laut, and M. A. Solov'ev. 

During preparation of the book, invaluable help to the authors was rendered 
by scientific editor Mr. David K. Barton, whom we thank with our hearts and hope 
that we have found in him not simply a highly skilled colleague but a friend as 
well. He has done a huge amount of work, in essence having translated our English 
text "with a significant Russian accent" into normal technical English, helped us to 
find the correct terms for the present moment, and asked questions that have un- 
doubtedly improved the text. 

We also offer heartfelt thanks to the employees of Artech House with whom 
we worked, for their extremely benevolent, attentive, and kind attitude to us. 

We would be delighted if interested readers would express, through Artech 
House or directly to us, their questions, remarks, and recommendations for im- 
provement of the book. We firmly believe that any scientific work never happens 
to be entirely completed. We imagine that the book is similar to an unfmished 
house: you look to the right at an empty window - one direction for development, 
on the left at an aperture for a door - another no less interesting picture! You see 
the best memory of the authors' work before you, and simultaneously express 
gratitude to them - studying their works and development in different directions. 

And we, as all authors of completed books, shall wait eagerly for this 
development. 
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Chapter 1 

Introduction to Frequency-Modulated 
Continuous-Wave Radar 

1.1 BRIEF HISTORY 

The idea of using FM signals for ranging to a reflecting object (a target) is very 
old. These signals were used as long ago as the 1920s for ionospheric research. 
The practical application of frequency-modulated continuous-wave (FMCW) radar 
started in 1928, when J. 0. Bentley filed the American patent [ l ]  on an "airplane 
altitude indicating system." 

Bentley's radar was very simple (Figure 1.1). The transmitter frequency is 
modulated with a triangular waveform (Figure 1.2), using an electric motor rotat- 
ing an adjustable capacitor. The transmitted energy is radiated toward the surface. 
Because the isolation between bansmitting and receiving antennas is limited, a 
small fraction of the transmitted cmergy (the direct signal) enters the receiving an- 
tenna along with the signal reflec~ed Gom the surface. The receiver input circuit is 
tuned to match, at any moment of time, the frequency of the transmitter. The 

a----- 
Electromotor 

Figure 1.1 Block diagram of radio altimeter by Bentley 
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Figure 1.2 Instantaneous frequency of the radiated and reflected signals. 

reflected signal frequency differs slightly from that of the transmission (Fig- 
ure 1.2), being delayed by a time r that is constant except for short intervals just 
after reversals of the slope of the transmitted frequency, whch occur at times 

T", T (2n + 1)- .... (2n + 1)"' + z , where n = 0,1,2, . . . 
4 4 

The difference is much less than the passband of the receiver input circuit, which 
therefore accepts the reflected signal along with the transmitter leakage. The dif- 
ference frequency R between these signals is formed by interaction of the two sig- 
nals in a nonlinear receiver element (mixer or detector). The frequency R is di- 
rectly proportional to the delay time (i.e., to range from the aircraft to the surface), 
except for the short time intervals following slope reversal. Measurement of SZ 
determines the aircraft altitude. 

Industrial applications of this idea began only at the end of the 1930s, when 
the ultrahigh-frequency band was exploited. Mechanical frequency agility of the 
transmitter provided the necessary frequency deviation (-20 to 30 MHz). Signal 
processing after the mixer was performed in a very low-frequency band. The radar 
illustrated is very simple and hence reliable. Ths  was the basic reason for wide 
application of FMCW radio altimeters in military aircraft before WW 11, and sub- 
sequently in civil aircraft. At present a low-altitude FMCW radio altimeter is a 
necessary element of the avionics suite for most military and civil aircraft, and also 
for space vehicles during landing. 

Most of the theoretical works on FMCW radar were published during a period 
from the late 1940s to the early 1960s [2-81. In addition to radio altimetry, FMCW 
radars have been developed for applications such as merchant marine navigation. 

The theory and engineering of pulse radar began to develop soon after the end 
of the 1930s. Most of the subsequent development in radar engineering was in 
pulse radars, which met most requirements of military and civil engineering and 
industrial applications. The FMCW radar art has found itself in the shadow of 
pulse radar. It has been largely "forgotten," and has been "recollected" only when 
requirements have appeared to measure very small ranges, from fractions of a me- 
ter to a few meters. Primary examples in military engineering are proximity fuzes 
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for artillery shells and missiles, and systems for detection of mobile targets. Major 
advances have been supported by development of the technology base in centime- 
ter and millimeter waves and microelectronics. 

FMCW radar has been developed and applied on a large scale in civil industry 
for measurement of levels of liquid, paste, or powder-like products in closed tanks. 
Such equipment is termed "level-measuring radar." 

1.2 EXAMPLES OF USE OF FMCW RADAR 

Before considering examples of FMCW radar applications, we will note the basic 
features of these radars. These are 

Ability to measure small and very small ranges to the target, minimal 
measured range being comparable to the transmitted wavelength; 

Ability to measure simultaneously the target range and its relative speed; 

Small error of range measurement, which with some processing methods is 
within hundredths or even thousandths of a percent; 

Ability to measure small lange changes (less than fractions of a percent of 
the wavelength); 

Ability to use various types of indicators (panoramic, plan-position etc.); 

Signal processing after mixing is performed in a range of frequencies, 
commensurable with the modulation frequency (i.e., in a frequency band 
from hundreds of hertz up to hundreds of kilohertz), considerably simpli- 
fying realization of the processing circuits; 

Safety from absence of pulse radiation; 

Compactness, the dimensions of a radar using modem technology being 
determined, basically, by the dimensions of the microwave block; 

Small weight and small energy consumption due to absence of high circuit 
voltages. 

We should note in particular onc more feature: the possible application of ultra- 
sonic transmissions. 

We will now consider several examples of FMCW radar applications. 

1.2.1 Radio Altimeters 

The application of FMCW radars as radio altimeters is well known in the radar 
community. There is a great deal of literature in which the theory of operation and 
practice for radio altimeters is discussed, and hence there is no need to dwell h r -  
ther on this issue. 
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1.2.2 Level-Measuring Radar 

The device works in the following way. The entire device or its transceiver an- 
tenna is placed on the cover of the tank (Figure 1.3). The antenna beamwidth does 
not usually exceed 10 to 12 degrees. The antenna beam is pointed vertically to- 
ward the surface of the tank contents to which the range R is measured. As the 
range H from the antenna to the bottom of the tank is known, the level is deter- 
mined as L = H - R. 

The maximum measured range is the height of the tank, which in most cases 
does not exceed 50m (e.g., in oil tankers). The minimal measuring range R is 
about 0.5 to 1.0m. The frequency bands J or K are typically used to obtain a pen- 
cil-beam antenna pattern. The most important parameter in a level-measuring radar 
is the range error. For most devices the rms error is within fractions of one percent 
to a few percent of R. In some cases measurement is required in small-volume 
tanks (with small heights). In these cases, R does not exceed one or two meters, 
and it is most expedient to apply ultrasonic level-measuring radar. 

In some manufacturing processes there is a two-layer liquid in the tank for 
which it is necessary to know only the level (layer thickness) of the lower liquid 
(for example, to pour out the bottom liquid and leave the top liquid). This problem 
can be solved with ultrasonic radar (Figure 1.4). The ultrasonic transducer is lo- 
cated on the bottom of the tank with its narrow beam directed vertically upwards. 
The radiated signal is reflected from the boundary between the two liquids, and 
thus the thickness of the bottom layer is measured. Part of the signal, of course, 
penetrates through the boundary and is reflected from the top surface of the liquid 
or gas (or air), passing again through the boundary of the liquids and entering the 
receiver. As a rule, however, this signal is strongly attenuated and easily filtered. 

1.2.3 Navigational Radar 

FMCW radar can be applied to navigation radars with ranges up to several kilome- 
ters. It should not be supposed that the operating range of FMCW radar is mheer- 

ktzzz 
Figure 1.3 Tank with level-measuring radar. 



Introduction to Frequency-Modulated Continuous- Wove Radar 7 

transducer 

- -- 

Figure 1.4 Ultrasonic radar nn a tank w ~ t h  a two-layer liquid 

ently limited to several kilometers, as longer ranges are entirely feasible even 
though pulse radars are generally used in such cases. FMCW radar is most useful 
at short ranges, from tens to hund~ eds of meters (e.g., for surveillance of the sea or 
large river ports when vessels arrive under conditions of bad visibility). FMCW 
radar can be used not only to search the water surface of the port but also to mea- 
sure range and relative speed of my targets within the port. 

The ability to measure vew short ranges, those within fractions of a meter, 
makes possible realization of onc more very important function. When a vessel 
makes fast to the wall of a quay the captain may not be able to observe the range 
between the hull and the wall, especially with large sea-going ships. This greatly 
complicates docking. The same PI oblem arises in passing through a lock chamber, 
where he must control not only the distance from his hull to the lock chamber, but 
also distance to the next vessel. This problem is easily solved by placing FMCW 
radar at the bow and stern for measurement of distance to the wall. The small 
size, simplicity, and economy of FMC W radars suit them to these problems. 

1.2.4 Vehicle Collision Warning Systems 

In the past several years vehicle collision warning systems (VCWS) have been 
developed in response to the substantial traffic growth in cities and on motorways. 
The design of these systems is very complex and difficult. For a brief description 

Figure 1.5 Coverage zones of vehicle c~,llision warning system 
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of one possible VCWS, we refer to Figure 1.5. The shading designates operating 
ranges of this system. These ranges are covered by four radars: front, tail, and two 
side mirrors. The front radar has a pencil-beam pattern several degrees wide. The 
range of this radar is about 300m, with a minimal range of 20 to 30 cm. The radar 
provides continuous measurement of range and relative velocity for targets ahead 
of the vehicle. This data appears on the display and in a computer that gives a 
danger signal based on this data, and if necessary activates the brake system. 

The tail radar carries out the same operations as the front radar, but in a circu- 
lar operating zone directly behind the automobile at ranges from - 20 or 30 cm to 
a maximum of -2 to 3m. This operating zone is used for parking and backing. 

The operating range of the side-mirror radar is -lorn, with a width of 10 to 20 
degrees, depending on the design of the automobile. This radar gives a danger 
signal when the next automobile is within its coverage. 

Comparing these VCWS specifications and the features of FMCW radars 
listed above, it is clear that these radars offer a good approach for VCWS. 

1.2.5 Precision Range Meter for Fixed Targets 

Methods of precision range measurement have long been known. Multifrequency 
CW radars using phase processing of the reflected signal are applied for this pur- 
pose. These radars allow us to measure range up to tens of kilometers with a rela- 
tive error of the order to lo-'. Multifrequency CW radars have already been 
applied in a geodesy [7]. However, there is a disadvantage to thm type of CW ra- 
dar: the impossibility of range measurement to fixed targets. To measure range to a 
fvted target we must install on it an active reflector to simulate a Doppler shift, but 
this is inconvenient and not always possible. FMCW radar is free from this disad- 
vantage [9], appreciably expanding its area of application, as shown by the follow- 
ing examples. 

For measurements in a triangulation network it is not currently necessary to 
use active reflectors. It is sufficient to install passive reflectors (e.g., comer reflec- 
tors) at the appropriate points of this network. 

Another example is monitoring the behavior of glaciers and snow avalanches 
in mountains. At present this monitoring is performed by theodolites. The defi- 
ciencies of this method are obvious: need for special crews for installation and 
operation; maintenance of these crews with appropriate housing and supplies; abil- 
ity to make measurements only under conditions of good visibility; and the addi- 
tional calculations required. 

Using FMCW radar this task can be solved much more easily. On the surface 
of a glacier (or snow avalanche) we install comer reflectors or drop them fiom a 
helicopter or by parachute from an aircraft. An FMCW radar is installed on a slope 
or top of the next mountain to observe the glacier. This radar continuously or peri- 
odically measures range to the appropriate comer reflector. Thus it is possible to 
obtain a record of dynamics (changes) of glacier motion or snow avalanche. The 
radar can work automatically, data being transferred by radio circuit. Hence, there 
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is no necessity to mount expeditions. Thls substantially simplifies and reduces the 
price of monitoring glaciers and snow avalanches. 

FMCW radars can also be used to measure displacement of walls of high 
buildings, towers, and other struct~ires. 

1.2.6 Measurement of Very Small Motions 

A typical example of small motion measurement is the observation of vibrations of 
various components of machnes and mechanisms. The most useful device for such 
measurements is contactness, mewing that there is no physical contact between 
the device and the vibrating component. Several devices for contactness vibration 
measurement are known, but all have one or another disadvantage (e.g., inability 
to perform measurement at high temperatures or in aggressive environments). 

Attempts to apply continuous microwave signals for these measurements are 
also known. In this case the narrow beam of a microwave radiation with frequency 
o is radiated toward a vibrating element and the phase difference between radiated 
and reflected signals is measured. If the delay of the reflected signal is T, this 
phase difference is wr. Then a reflected signal phase shift of 360' corresponds to a 
range change of U2. For example, if h = 7.2 rnm, then a 10-pm change produces 
l o  of phase shlft. This permits us to measure very small range changes. 

As methods of direct measurement of phase differences of microwave signals 
are unknown, various indirect ways for such measurement have been developed. 
The resulting devices for vibration measurement using microwave signals are very 
complex and have not been widelv applied. FMCW radar simply solves this prob- 
lem [lo]. The fact is that. the information on the phase angle wz appears in the 
low-frequency signal at the mixer output of the receiver. This considerably simpli- 
fies measurement of the phase angle oz with the usual analog or digital phase de- 
tector. It is obvious that one area of application for FMCW radar 1s for measure- 
ment. 

The list of examples of application of radars can be continued. However, from 
this list it can be seen that the area of application of these radars is wide. In the 
following chapters we will call FhlCW radar short range radar (SRR) for brevity. 
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Chapter 2 

Basic Theory of Short-Range FM Radar 

2.1 PRINCIPLE OF OPERATION AND BASIC BLOCK 
DIAGRAM OF FM RADAR 

The principle of operation of pulse radar is based on time separation between the 
transmitted and reflected signal ;and measurement of the time interval between 
transmitted and received pulses. In FM radar, because continuous radiation is 
used, separation of transmitted and reflected signals in time is impossible. Hence, 
reception of information about the range to a target is possible only when the 
transmission is modulated in amplutude or phase. 

Amplitude modulation is not used because it is practically impossible to select 
the reflected signal against the interfering background of the transmission, the re- 
flected signal from targets even a few meters from the radar being some tens of 
decibels less than the transmitted signal. Thus the only means to determine the 
reflected signal delay relative to the transmission is on the basis of the phase dif- 
ference of these angular modulated signals. This operation can be easily carried 
out by multiplication of transmitte'd and reflected signals. After multiplication, two 
signals are formed, one with a phase equal to the difference of phases of the multi- 
plied signals, and the other with a phase equal to the sum of these phases. The lat- 
ter signal is easily filtered out, as its frequency is twice that of the radiated signal. 

The basic block diagram of ;in FM radar is shown in Figure 2.1. The signal 
from the FM generator, controlled by the modulator, is radiated toward the target 
by the transmitting antenna. The expression for the transmission is: 

where U J t )  is the signal amplitude and ~ ( t )  is its phase. A sample of the FM gen- 
erator signal passes to the multipl ler (mixer) as the heterodyne signal. This signal, 
which we will call the direct one, can be expressed as: 
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1 T n s i i n  FM Frequency 
antenna generator modulator I 

Figure 2.1 Basic block diagram of an FM radar system. 

Information 
display 

.) 

where UAt) is the direct signal amplitude and qAt) is its phase. The tirne- 
dependence of amplitudes of the transmitted and direct signals is caused by the 
fact that the frequency modulation is practically always accompanied by parasitic 
amplitude modulation. Also, the amplitude of a signal from any generator always 
fluctuates. 

The reflected signal from the receiving antenna also enters the mixer. In fur- 
ther analysis we will consider that the reflecting target introduces no firher ampli- 
tude or phase fluctuations (i.e., it is a point target). Such a model of the reflected 
signal does not correspond completely to a real reflected signal, but it allows 
rather simple analysis of the mixer output signal as we consider processing meth- 
ods and carry out necessary calculations. The theory of operation of FM radar, in 
view of parameters of the real reflected signal, is a subject of an extensive separate 
discussion. Thus, the reflected signal can be written as: 

System of converted 
signal processing 

Receiving 
antenna 

where kl expresses the reduction in its amplitude, r is its time delay relative to the 
transmission, and cpo is the phase shift caused by reflecting properties of the target. 

As the reflected signal entering the mixer is much less than the direct signal, 
the mixer output signal can be written as 

where the first term represents the result of conversion of the reflected signal, the 
second is the result of amplitude detecting the direct signal, and k2 and k3 are fac- 
tors describing the mixer voltage gains in conversion and amplitude detection 
modes. We will call the mixer output signal the converted signal. In the literature 
it is frequently called an intemzediate fi-equency (IF) signal (by analogy to the 

) Mixer 

A 

4 
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intermediate frequency signal in a superheterodyne receiver), and also the distance 
measuring signal. 

Only the first term in the converted signal (2.4) is usehl, containing the in- 
formation on target range and speed relative to the FM radar. The second term is a 
parasitic signal. This signal has nu influence on the useful signal, but at the same 
time has a major influence on operation and technical parameters of FM radar, 
especially on short-range FM radar. The fact is that the intensity of this signal, as a 
rule, exceeds that of the useful signal by a ratio varying from a few to tens of deci- 
bels, and its spectrum overlaps that of the usehl signal. The reduction of parasitic 
signal effects on the operation of FM radar is one of most important and difficult 
t echca l  problems in design. 

The converted signal from the mixer output passes to the system of process- 
ing, selection, and display of range and speed information. Thus, in further analy- 
sis of the useful signal we will consider that the transmitted, direct, and reflected 
signals have no amplitude modulaaion (i.e., Up(?) = Up, Udt) = Ud, and U,(t) = U,). 
Methods for decreasing of iduer~ce  of parasitic amplitude modulation of the di- 
rect signal on operation of FM radar will be analyzed further in Chapters 4 and 5. 

As we can see, the main feature of an FM radar is the multiplication of trans- 
mitted (direct) and reflected signals. Let us note also that thls block diagram is 
rather close to that of the correlatron receiver. Thls block diagram forms the basis 
of many block diagrams of FM radar. We now proceed to consideration of typical 
block diagrams of short-range FM radar. 

2.2 TYPICAL BLOCK DMGRAM OF SHORT-RANGE FM RADAR 

2.2.1 System with Separate 'Transmitting and Receiving Antennas 
and Nonzero Intermediate Frequency 

The block diagram of this radar, which is the most complex and ideal, is given in 
Figure 2.2. The main difference between thls system and the basic one is that a 
central frequency shift is included in the direct signal path between the FM genera- 
tor and mixer. In this block the central frequency is shifted to one side or the other 
by 60, and the parameters of mothlation remain unchanged, as necessary for sys- 
tem operation. This shift is often implemented by amplitude modulation of the 
direct signal followed by selectio~l of one sideband. The size of shift is determined 
by the transmitted spectral width, by parameters of the filter selecting the side- 
band, and by requirements for suppression of other parts of the signal spectrum. In 
a radar operating at centimeter wavelengths, the carrier frequency shift is usually 
between tens and several hundreds of MHz. 

The basic purpose of the central frequency shift is the realization of classical 
heterodyne reception. As the central frequencies of direct and reflected signals are 
separated by 6 0 ,  the converted s~gnal spectrum will be grouped around that fie- 
quency. This permits the basic amplification of a received signal by an IF band- 
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Figure 2.2 FM radar with nonzero intermediate frequency. 

pass amplifier, as is done in typical superheterodyne receivers, and achieves de- 
coupling between this signal and the parasitic amplitude modulation signal. An 
additional microwave amplifier can also be included between the receiving an- 
tenna and the mixer. In other respects this block diagram does not differ fiom the 
basic circuit of Figure 2.1. 

This circuit is applied mainly in cases where high receiver sensitivity is neces- 
sary and there is an opportunity to ensure sufficient decoupling between receiving 
and transmitting antennas. With insufficient decoupling, an intense signal with 
fiequency 661 will appear at the input to the IF amplifier as a result of leakage from 
the transmitting antenna into the receiving antenna, which can complicate ampli- 
fier operation and cause coupling between the useful signal and the parasitic am- 
plitude modulation signal. 

2.2.2 Circuit with Nonzero Intermediate Frequency and Complex 
Frequency Modulation 

By applying certain complex types of modulation, the converted signal, whose 
spectrum occupies higher frequencies in comparison with modulation frequency, 
may be caused to have so-called dual-fiequency modulation (i.e., modulation by 
the sum of two periodic functions). The appropriate block diagram of such radar is 
given in Figure 2.3. In this system there is no carrier frequency shift of the direct 
signal, and therefore the receiver here is called a homodyne. In other respects this 

signal processing 

t I 

Figure 2.3 Homodyne FM radar (with nonzero intermediate frequency). 
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system does not differ significantly from the previous one. 
This system has not found wide application, mainly due to the fact that it re- 

quires the application of complex modulation, complicating selection of the useful 
part of the converted signal spectrum, especially in cases where the range to the 
target varies very widely, and homodyne reception does not give the advantages 
inherent in the previous circuit. Homodyne reception is nevertheless applied in 
most short-range FM radars. Despite its disadvantages, homodyne reception has 
one very important advantage: it permits use of one antenna for both transmission 
and reception of a continuous signal. 

2.2.3 System with a Single Transmitting-Receiving Antenna 

This type of short-range FM radar is the most widely used, as it has minimum size 
and can be built as a single block. It differs from the previous one by the structure 
and circuit of the microwave block, and hence we show in Figure 2.4 not the full 
radar circuit but the only the diagram of that block. 

As in the previous circuits, the FM generator can be modulated by one or by 
the sum of two or more modulating functions. The generated signal enters port 1 
of the circulator. Almost all the energy of this signal (losses are typically tenths of 
a decibel) passes from port 2 to the transceiver antenna and is radiated toward the 
target. As the isolation between pcnrts 1 and 3 is not infinite (usually no more than 
20 to 30 dB), a small part of the signal power from port 1 appears at port 3, to 
which the mixer is connected. This leakage signal can serve two functions. On the 
one hand it can serve the function of a direct signal as the heterodyne signal for the 
mixer. On the other hand, it can simultaneously be harmful as a source of a para- 
sitic signal at the mixer output, formed because of amplitude detection of the di- 
rect signal with parasitic amplitude modulation. 

Which of these two functions applies to h s  signal depends on the mixer pa- 
rameters (i.e., on the ratio of gain factors in conversion and detection modes, and 
also on the ratio of the reflected and direct signals: the more the first factor ex- 
ceeds the second and the greater the ratio of signals, the greater the effect of the 
first function and vice versa). In most cases the leakage signal performs both func- 
tions. If the leakage signal power is insufficient for normal mixer operation, an 

r 
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Figure 2.4 FM radar with single transmrt-receive antenna. 
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System of converted 
signal processing 

Figure 2.5 Autodyne FM radar with single transmit-receive antenna. 

additional path can be provided connecting the direct signal to the mixer (shown 
by a dashed line in Figure 2.4). 

The signal reflected enters port 2 of the circulator, passes to port 3 and on to 
the mixer. The converted signal from the mixer output passes to the processing and 
information selection system. As we can see, the microwave block is rather simple: 
for millimeter band operation its volume does not exceed several cubic centime- 
ters. The basic disadvantage of this circuit is the difficulty of neutralization of the 
harmful effect of the parasitic amplitude modulation signal on the processing cir- 
cuit, resulting from amplitude detection of the leakage signal. However, this does 
not prevent wide application of this circuit to short-range FM radar. 

2.2.4 Autodyne System with a Single Antenna 

The block diagram of this FM radar is given in Figure 2.5. The main difference 
between this system and the previous ones is the use of an autodyne. The autodyne 
is an oscillator that simultaneously carries out fimctions of generating the trans- 
mission and mixing the transmitted and reflected signals. There is no separate path 
for the direct signal in the autodyne, as the radiated and reflected signals exist at 
the same point of the autodyne circuit. It is obvious that the autodyne can operate 
only with one combined (transmitting-receiving) antenna. The main advantage of 
this circuit is the simplicity of its microwave part, compactness, and relative 
cheapness. Therefore this circuit is applied when these qualities are determining, 
for example, in widely applied small-sized onboard FM radars. 

A specific feature of the autodyne is the fact that quasi-linear conversion is 
possible only up to a certain reflected signal level at which it has no appreciable 
influence on the mode of autodyne operations. However, operation with rather 
intense reflected signals at small target ranges is possible in short-range FM radar. 
The detailed theory of autodyne operation is given in the second part of this book. 

2.3 GENERAL EXPRESSIONS FOR TRANSMITTED, REFLECTED, 
AND CONVERTED SIGNALS 

For frequency modulation of the transmission, the expression for its frequency is 
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where o, is the central frequency; Am is the frequency deviation; and y(t) is the 
frequency modulating function. The phase of the transmitted signal is 

Here, the initial phase is set equal to zero, and for simplification of formulas the 
integral in (2.6) is designated as: 

The function F,(t) by analogy with y(t) is the phase modulating function of the 
signal. If there is no the shift in the central frequency of the direct signal, its phase 
will be the same as that of the transmitted signal: (Pd(t) = (pp(t). 

With shift of the central frequency, the phase of the direct signal will be 

cp, ( t )  = (w, f 6o) t  + AoF, ( t )  (2.8) 

The additional phase shift in the direct signal path can also be considered zero, as 
it has no influence on radar operation. 

With the provision that we consider the target as a point target, the phase of 
the reflected signal is 

I 1-1 

where S ( t ,  r )  = j y(t - r)dt = j yl t)dt is the phase modulating function of the 
7 0 

reflected signal. The lower limit in the integral in this formula is equal to r because 
the reflected signal has that time delay. 

Substituting (2.6), (2.8), and (2.9) into (2.4), we obtain the expression for 
phase of the converted signal for the cases without and with central frequency 
shift, respectively: 

cp, ( t ,  r )  = ~ o t  + *.r + A O [ F ~  (0 - e(t, r ) ]  - qo (2.1 I )  
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The difference of the modulating fimctions in square brackets in these formulas is 
the phase modulating function of the converted signal and can be expressed as: 

For further analysis of the properties of the converted signal, let us assume 
that the delay of the reflected signal in time varies linearly: 

where zo is the initial value of delay; V, is the relative radial speed between the 
radar and the target; and C is the speed of propagation of electromagnetic energy. 
In this case 

where cp, is the initial phase shift and OD is the Doppler frequency. Thus, the as- 
sumption is that the Doppler frequency caused by target motion is constant as is 
necessary to carry out the analysis of the converted signal spectrum. Such an as- 
sumption is reasonable for the following reason. The maximal time necessary for 
processing of the converted signal for most short-range FM radars does not exceed 
several tens of milliseconds. During this interval the motion of most targets is so 
insignificant that we may consider the relative radial speed constant. For example, 
at 100 kmh the target will move by only 30 cm in 10 ms. 

Substituting (2.14) in (2.10) and (2.1 I), we obtain 

yt (t, z) = kRDt + AaF; (t, z) + cp, - cp, (2.15) 

cp, ( t ,  z) = (60 +RD)t + AoF, (t, z) +cp, - cpo (2.16) 

Differentiating (2.15) and (2.16) with respect to time, we obtain expressions for 
the instantaneous frequency of the converted signal: 
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In (2.17) the absolute value is necessary because the converted signal frequency at 
different moments of time can have "negative" sense. The sign of Doppler fie- 
quency in (2.17) and (2.18) has symbolical meaning and serves as a reminder that 
the Doppler frequency shifts the spectrum toward higher frequencies for approach- 
ing targets, and toward lower frequencies for receding targets. 

2.4 GENERAL RELATIOR SHIPS FOR THE CONVERTED SIGNAL 
WITH MODULATION BY A PERIODIC FUNCTION 

For periodic transmitter modulation we will define the frequency modulating hnc- 
tion y(t) as a function with period Tm, having zero average value, varying from 
-0.5 to +0.5 and having a definite rype of symmetry. 

The normalization of limits of function y(t) is necessary because with different 
types of modulation the llmits of frequency change are determined only by the 
frequency deviation Am. It is otherwise impossible to compare parameters of the 
converted signal with various types of modulation. With periodic modulation, the 
modulating function of the converted signal phase, as follows from (2.12), is also 
periodic and hence the converted signal is a fiequency-modulated signal. 

For further analysis it is usefi~l to consider the following. As the phase modu- 
lating function of the reflected signal is moved in time r relative to the modulating 
function of the transmission, the modulating function of phase of the converted 
signal equal to their difference is asymmetric, because of a shift of 212. In this 
connection, it is expedient for opeuations with this function to make a replacement 
of the variable, setting t' = t - 62 .  

In short-range FM radar the relationship Tm >> .s is usually applicable. Actu- 
ally, for an example at target ranges up to 150m and with a modulation frequency 
of 10 kHz, the ratio Tm/r = 100, and at smaller range this ratio will be even greater. 
In this case, using the known theorem for the average value of the integral, it is 
expedient to calculate the simple expression for the phase modulating function of 
the converted signal: 

Note that (2.19) is applicable only in the event that the function y(t) has no discon- 
tinuities in the interval from t - r to t ,  as is true for most modulating fimctions. 

Equation (2.19) is very convenient in calculation, as it avoids integration of 
the function y(t), and equally importantly, it allows us to see directly the relation- 
ship of the phase modulating function of the converted signal to the function y(t) 
(the type of modulation of the transmitter): 
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Using (2.17), (2.18), and (2.19) we also have simple expressions for the instanta- 
neous frequency of the converted signal: 

One of the major characteristics of the converted signal is its spectrum. It is 
obvious that the converted signal spectrum in the case of direct signal central fre- 
quency shift differs significantly from that without such a shift. In the first case the 
converted signal spectrum is concentrated in the band 6 0 .  The parameters of 
modulation of the transmission are selected in such a manner that the converted 
signal spectral width is much less than 60. Hence the converted signal spectrum in 
this case does not differ Erom that of an FM signal whose frequency is defrned by 
(2.18) or (2.23). The procedure for calculation of the FM signal spectrum is de- 
scribed in detail in any textbook on the fundamentals of radio engineering, and it is 
therefore unnecessary to carry it out within the framework of this book. 

In the second case the converted signal spectrum appears in the band of fre- 
quency of modulation, or equivalently in the region of "zero intermediate fre- 
quency." Often in the first case the converted signal is exposed to a second con- 
version with heterodyne frequency 6 0  and is moved into the region of "zero in- 
termediate frequency." Thus, the calculation of a spectrum only for the second 
case represents the greater interest. 

For calculation of its spectrum, we will write the converted signal from (2. lo), 
(2.12), and (2.14) as: 

a, (t, z) = 

u, = U, cos [ k ~ , t  + d o e  (t, z) + cp, - cp,] 

cos [faDt + cpr - cp, ] cos AoE;; (t, 2)  i (2.24) 

-sin[kQDt +cp, -cp,]sin~oF, (t,z) 

+aD + Aoz - 
dt 

The functions cosAoF,(t,z) and sinAoF,(t,z) are periodic by virtue of periodicity 
of the function F,(t,z) and can be presented as Fourier series. However, this only 
applies with one assumption: we consider z constant in expansion of the specified 
bctions. Otherwise these functions are not periodic and their expansion in a Fou- 
rier series is impossible. This assumption is justified by the fact that the delay time 
practically does not vary during the period of modulation. Actually, the period of 
modulation in most cases does not exceed milliseconds, but even at 100 kmlh the 
range will change by only -3 cm in 1 ms. The change of Aoz will also be insig- 
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nificant. So for example, at -lOm range, the relative change will be -0.3%. Be- 
sides, at a range of 10m targets do not move with relative speed of 100 krn/h. 
Thus, the assumption is not only necessary but justified. 

At the same time we note that if in (2.13) we accept the delay time as con- 
stant, then the Doppler effect is not taken into account in the analysis of the con- 
verted signal, which is obviously completely inadmissible. So, setting t - r/2 = t', 
we obtain 

where Kn (r) = ,/.:(.,-* b: (r) 

and 

where 

c ( 9  - 
sin A m 6  (1 ", 7) = - + L,, (z) sin [nO,tl + X, (t)] 

2 ,=I 

c x,, (r) = arctan -'- 
4 ('5) 

2 T" 2x 
c,,(T) = -- I sin bot( t1,r)cos n-t'dt' 

r m  0 T m  

2 Tm 271: 
dn (r) = - I sin A m 6  (t', r)sin n -tfdt'. 

Tm 0 T m  
Substituting (2.25) and (2.26) into (2.24) and using the variable t ,  we obtain: 
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where: Uteo (r) = 0.5 Ja,Z (7) + c,Z (r) is the amplitude of the spectral component 

with the Doppler frequency; 

is the additional phase shift of the component with <(r) = arctan - 
c,2 (2) 

the Doppler frequency; 

amplitude of a spectral component with frequency nR, - RD ; 

U P .  (r) = 0.5 JK: (7) + L: (r) + 2K. ( r ) ~ .  (r)sin[v. (4 - X n  (r)] is the 

amplitude of a spectral component with frequency nSZn +a, ; 
Kn (r) a n  w n ('1 - Ln ('1 '0' ~n (7) is the additional phase qn  (r) = arctan 
Kn(z) cosyn (r) + Ln (9sin xn (r) 

shift of the spectral component with the frequency nSZ, - 0; 

shlft of the spectral component with the frequency n o ,  + SZ.  

From (2.27) it follows that the converted signal spectrum includes a component 
with the Doppler frequency determined by the first term, and an infinite number of 
components with frequencies nRm + S Z ,  and that the components with frequencies 
n o ,  are absent. This implies that the converted signal belongs to a class of so- 
called almost periodic fluctuations. 

The amplitudes and phases of each pair of components with frequencies 
nSZ, + SZ and nRm - SZ are related and depend on the range to the target, the type 
of modulation, and the frequency deviation of the transmission. If the range be- 
tween the radar and the target is constant (i.e., Doppler effect is absent), each pair 
of spectral components merges into one with frequency nR,. 

2.5 GENERAL RELATIONS FOR A CONVERTED SIGNAL WITH 
DUAL-FREQUENCY MODULATION 

Modulation by the sum of two periodic functions is called dual-jlequency modula- 
tion. The need to analyze the converted signal with this modulation is explained by 
several factors. First, such types of modulation are applied in SRR. The second 
modulation is intended to provide the necessary SRR parameters and performance 
(improvement of range resolution, generating a signal of "intermediate fre- 
quency"), for security of operation of automatic systems in the converted signal 
processing device, and so forth. Second, in some cases of modulation by a com- 
posite function it is convenient in the analysis of a converted signal to represent 
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the frequency modulating function of the transmission as the sum of two other 
hnctions that are more convenient for integration in evaluation of the Fourier se- 
ries coefficients. In some cases such an approach may be the only feasible method 
for performing the necessary calculations. 

Third, it is convenient in analyzing the effect of a nonlinear FM generator 
modulation characteristic to exprcss this characteristic as the sum of linear and 
nonlinear parts. Thus an incidental dual-modulation appears even when single 
modulation is intended. With dual-modulation the frequency of the transmission 
can be expressed as 

wl, (t) = ti" + AoIy, (t) + Aw2y2 ( t )  (2.28) 

where y,(t) and y2(t) are frequency modulating functions with periods Tml and Tm2 
and varying w i t h  limits from -0 5 to 0.5. By analogy with previous calculations, 
the phase of the converted signal is 

Further analysis can be carried out in two ways. The converted signal can be 
expressed as in (2.24), and the phase shift due to the second modulation is in- 
cluded as an addition to angles + I D t  + ( P ~  - q o ,  for which we write (2.24) as: 

U, =u,cos[+R,,~+A~,~;,(~,T)+A~,F,,(~,T)+~~ -cp, ]  

cos[+RDt + cpT - - cp, + Ao,F,,(t, t ) ] c o s ~ o ~ F , ,  (t, z) (2.30) 

-sin[+L2,t+rpr -cp,  +Ao,F,,(t,t)]sinAo,F,,(t,z) 

and perform fiuther calculations using (2.25) - (2.27). After that we view each 
spectral component of the conveaed signal with frequency f L2D as a phase- 
modulated oscillation whose phase varies according to Ao2FQ(t,r). Such an ap- 
proach is expedient for applying the rule that there appear near each component of 
the converted signal spectrum one or two sidebands, for small phase modulation 
index of the second modulation, and if the periods of modulating functions yl(t) 
and y2(t) differ significantly the sideband spectra do not overlap. 

A spectral analysis similar to that carried out for a single modulation (2.24) - 
(2.27) allows us to define the general regular dependence of the converted signal 
spectrum on phase (2.29). 

Using known formulas of trigonometry, it is possible to express the converted 
signal as 

cos x(cos y cos z - sin y sin z )  
U, = U3 

- sin x(sin y cos z + cosy sin z )  I 
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where x = S D t  + cp, - cpo, y = ACO~F,~(~,T), and z = Ao2FI2(t;r). Further functions 
sky,  sin z, cosy, and cos z are represented as Fourier series similarly to (2.25) and 
(2.26). From comparison of (2.25), (2.26), and (2.31) it follows that the converted 
signal spectrum for dual-modulation consists of components with frequencies 
k nQml + MZm2 m D ,  where n = 0,1,2,3 ..., k = 0,1,2,3 ..., whose amplitudes are de- 
termined by products of the form 

in which the coefficients a, c, K, and L are determined from (2.25) and (2.26) for 
the first and second modulations. From this analysis at least two important deduc- 
tions follow: 

1. With dual-modulation the spectrum of the converted signal becomes con- 
siderably complicated, and hence filtration of this signal becomes complicated. 
Therefore dual-modulation, if applied, is auxiliary and its parameters are picked so 
that a Fourier series of functions sinz and cos z can be restricted to a small number 
of terms. 

2. The dependence of the amplitude of any spectral component upon the 
product of the relevant coefficients of a Fourier series creates additional opportu- 
nities for forming the necessary converted signal spectrum. 

2.6 GENERAL RELATIONS FOR A CONVERTED SIGNAL WITH 
MODULATION BY A MODULATED PERIODIC FUNCTION 

In practice, for an SRR there are cases of intended double modulation, when the 
amplitude or angular modulation of the modulating function itself y(t) is applied. 
Such modulation is applied, for example, for security of operation of automatic 
radar systems or for obtaining the necessary performance of the converted signal. 
With amplitude modulation by the function y(t), the frequency modulating func- 
tion of the transmission is: 

where 6(t) is the function defining the type of amplitude modulation, and rn is the 
amplitude modulation index. The frequency of the transmission is 

o, (t) = a, + ~o [1 + m6(t)] y(t) (2.33) 
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In the overwhelming majority of cases the period of function 6(t) differs consid- 
erably from the period of function y(t), and more often the period of the first is 
much greater than that of the second. 

The analysis of the converted signal in this case is easily carried out, consider- 
ing the function y(t) as unrnodulated, and frequency deviation as modulated by 

Ao[l + m6(t)]. Thus, caYculation of the converted signal parameters is initially 
carried out using the procedure described in Section 2.4, on the assumption that 
the frequency deviation is fixed. After that the dependence of the relevant con- 
verted signal parameters (phase, instantaneous frequency, spectrum) upon the 
varying deviation is determined. 

This approach can be applied also for the case in which the repetition periods 
of functions 6(t) and y(t) are commensurable, but in this case the calculations be- 
came significantly complicated bccause of spectrum overlapping of sidebands ap- 
pearing near each component of the converted signal spectrum. 

If the repetition period of function y(t) is modulated, that will occur much 
more slowly than the period of the function. Therefore here again it is possible to 
carry out all calculations assuming a constant period, and then inserting the rele- 
vant corrective amendments to the converted signal parameters, related to the pe- 
riod of the modulating function ~ ( t )  (for example, the value of instantaneous fre- 
quency or frequencies of spectral components of the converted signal). 

2.7 BLOCK DIAGRAMS OF ULTRASONIC SRR AND 
FEATURES OF THE CONVERTED SIGNAL 

As specified in Chapter 1, irnplcmentation of SRR is possible not only in radio 
frequency bands, but also at ultrasonic frequencies. In this case the transmitted 
signal is ultrasonic waves representing mechanical oscillations of the gas or fluid 
surrounding the SRR. These waves are generated by ultrasonic transducers that 
excite mechanical oscillations in fie gas or fluid in response to an electrical signal. 
The principle of operation of thet;e transducers is based on the piezoelectric effect 
or on magnetostriction. Thus, the ultrasonic transducer is the antenna of the ultra- 
sonic SRR. As in the radio antenna, the ultrasonic transducer cannot only radiate 
ultrasonic waves, but also convert ultrasonic waves to an electrical signal, and as 
with the radio antenna, the ultrasonic transducer is characterized by a radiation 
pattern, gain factor, and sidelobe levels. 

The range of operating frequencies of transducers lies between -20 and 
100 kHz for operation in a gas medium, and -50 to 300 kHz for a fluid. The width 
of the radiation pattern varies from a few degrees up to two or three tens of de- 
grees and depends on the geometrical size of the transducer and its construction. 
The power of the transmission is such as to provide an operating range up to sev- 
eral tens of meters in a gas medium and hundreds of meters in a fluid. 

Ultrasonic waves are propagated much more slowly than radio waves. The ve- 
locity of sound in air is -330 ms, and in water -1,500 m/s. Also, the velocity of 



26 Fundamentals of Short-Range FM Radar 

sound propagation depends on the temperature of the medium (for example propa- 
gation in air varies by -0.5 m/s°C), the water vapor or dust content of the gas me- 
dium, the concentration of the weighed particles in a fluid, and so forth. 

As we can see, the velocity of ultrasonic waves in air is approximately lo6 
times less than the velocity of propagation of an electromagnetic field. Thus, the 
wavelength of an ultrasonic wave in air at a frequency -50 kHz is equal to the 
wavelength of radio-waves at a frequency -50 GHz (-6 mm). The same ratio ap- 
plies to the frequency deviation: a frequency deviation of -1 kHz in an ultrasonic 
wave in air corresponds to a deviation of 1 GHz in a radio fiequency, as the prod- 
ucts Ao.s in both cases will be identical. 

The reduced values and the parameters of ultrasonic transducers allow us to 
draw the conclusion that the ultrasonic SRR follows the same principles as for 
radio waves. Actually, ultrasonic SRRs are usually designed with the same block 
diagrams as radio-wave systems (Figures 2.2 to 2.5). Ultrasonic transducers are 
used instead of "antennas." Precisely the same variants with two and with one "an- 
tenna" - the ultrasonic transducer - are also possible. Certainly, in the scheme of 
Figure 2.4 there is no circulator, and the FM transmitter signal is passed to the 
same point: the ultrasonic transducer and mixer. 

Principles and expedients of converted signal processing in an ultrasonic SRR 
are almost the same as for the radio fiequency one. Some differences are caused 
by large values of delay time of the reflected signal, because of which it is difficult 
to ensure the validity of the relation T,,, >> r in some cases. For example, at a tar- 
get range of 16m, the delay time of a reflected ultrasonic signal propagating in air 
is 4 .1 s .  Thus, even with fiequency modulation at 10 Hz, T,,, = r,  and it is obvious 
that with target delay time equal to the modulation period there is an ambiguity in 
determination of range, as this situation is equivalent to absence of a delay (i.e., to 
zero target range). 

With increase in the period of modulation it can appear that the fiequency of 
modulation is commensurate with or even less than the Doppler ti-equency. Note 
that the Doppler frequencies for radio frequency and ultrasonic SRR are approxi- 
mately identical, as the radiated wavelengths are approximately identical. With 
comparable frequency modulation and Doppler fiequency there are difficulties in 
filtration and processing of the converted signal. Hence, with a change of Doppler 
frequency such converted signal parameters as its phase, instantaneous frequency, 
and spectral pattern vary considerably. For this reason ultrasonic SRR with con- 
tinuous radiation can be most expediently applied to measuring of very small 
ranges (less than several meters), with small target velocities, especially when a 
simple, reliable, and mainly cheap measuring device is required. 



Chapter 3 

Characteristics of the Converted Signal 
with Different Transmitter Modulations 

3.1 SINUSOIDAL MODU1,ATION 

Modulation by a sinusoidal funclion is often applied in SRU. It is explained by 
. several considerations. First, it i$ relatively simple to produce such modulating 

voltage or current. The narrow bandwidth of the modulatmg process reduces re- 
quirements on the frequency response of the modulator. The frequency spectrum 
of the converted signal makes it suitable for processing and deriving of range data. 
Thus, the area of application of th~s  modulation: simple and compact SRR, such as 
low-range altimeters, level measuring radar, and sensors of mobile targets in secu- 
rity systems. 

3.1.1 Modulation by a Single Sinusoid 

In this case the modulating functicw of transmitter frequency is defined as 

Note that the modulating functio~l~ could be defined by a sine without changing the 
result. 

According to (2.12), phase mlodulating function of the converted signal is 

cosQ,t sin(xr l T,) T = I-r = (  2 7cz 1 T, ) c o s Q ( t - )  (3.2) 
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In most cases the term in brackets before the cosine differs little from unity be- 
cause Tm >> z. However, in some cases this relationship is violated and it is im- 
possible to neglect this term. 

According to (2.17) and (2.18), we obtain expressions for instantaneous fre- 
quency of the converted signal accordingly for the case with no direct signal cen- 
tral frequency shift and with a shift: 

It follows from (3.4) that with direct signal central fiequency shift, the converted 
signal has sinusoidal frequency-modulation with a fiequency deviation given by 

In this case deviation is understood as maximal shift of instantaneous frequency 
fiom a center fiequency of the converted signal (note that the frequency deviation 
of the transmitted signal was defined as a frequency shift from its minimum to its 
maximum). From (3.5) it also follows that the maximum value of frequency devia- 
tion of the converted signal is A o  at z = TJ2. 

For Tm >> z the dependence of frequency deviation of the converted signal on 
echo signal delay is linear and, importantly, is continuous. This permits convenient 
use of this dependence for range measurement. From (3.4) it also follows that the 
center frequency of the converted signal is shifted in to one side or the other by the 
Doppler frequency. To which side the frequency is shifted depends on whether the 
target is receding from or approaching the SRR, and on whether the direct signal 
central frequency is below or above that of the transmitted central frequency. 

Let us suppose that the target is approaching, producing a center frequency of 
the reflected signal w ,  = o, + RD. If the direct signal central frequency is 
o,d = a, - 60, the center fiequency of a converted signal is o,, + RD - (o, -60) = 

6 0  + RD. If the direct signal central fiequency is o,d = o, + 6 0 ,  the center fre- 
quency of the converted signal is o,, + 6 0  - (o, + RD) = 6 0  - RD. For a receding 
target the situation will correspondingly be the opposite: the center fiequency of 
converted signal for an approaching target will be shifted downwards by the Dop- 
pler fiequency, and for a receding target will be shifted upwards. Thus, by the shift 
of center fiequency of the converted signal it is possible to determine not only the 
relative (radial) speed of the target, but also whether it approaches or recedes. 
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Completely different time dependence of instantaneous frequency of the con- 
verted signal takes place in the atxence of direct signal central frequency shift. In 
this case the converted signal is also frequency-modulated. Formally the "central" 
frequency of the converted signal is the Doppler frequency, and for fixed targets it 
is "zero" frequency. The frequency deviation is also determined by (3.5). There- 
fore, dependence of instantaneou.; frequency in thls case is largely determined by 
the magnitude of Doppler frequency. If RD > AQ,(z), the converted signal repre- 
sents an FM signal with center fiequency RD and sinusoidal modulation. On the 
other hand, if nD < AQ,(.c), separate segments of instantaneous frequency values 
fall in area of "negative frequencies." However, as "negative" frequencies do not 
exist, the "negative" values of instantaneous frequency are folded to the area of 
positive frequencies, and a plot of instantaneous frequency from (3.3) has an in- 
flection on the time axis [Figure 3.1 (b), (c)]. 

For approachmg targets, whcn the center frequency of reflected signal is in- 
creased, the plot of instantaneous frequency is shifted upwards by the Doppler 
frequency [Figure 3.l(b)]l, and for receding targets is shifted downwards by the 
same value of "negative" Doppler frequency [Figure 3.l(c)]. But, as we can see, 
one curve differs fiom other only in that it is shifted in time by a half-period of the 
modulating function. Therefore, it is impossible in this case to determine the 
"sign" of Doppler frequency from parameters of the converted signal, and fkom it 

Figure 3.1 Modulating function and instantaneous frequency of the converted signal. 
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to determine whether the target is approaching or receding. That can be done only 
by comparing values of maximal instantaneous fiequency to values of the deriva- 
tive of the modidating function at its zero points [Figure 3.l(a)]. If the derivative is 
positive, we are at point 1, and if it is below zero, at point 2. Comparing values of 
instantaneous frequency at these time moments it is possible to determine whether 
the target is approaching or receding. 

The spectrum of the converted signal in the case of direct signal central fre- 
quency shift, as noted in Section 2.4, differs not at all from the spectrum of a 
"usual" FM RF signal with sinusoidal modulation. The same spectrum will appear 
if OD > AO,(z). The difference is only that in the first case the center frequency of 
the converted signal is 6 0  f OD, and in the second it is CID, Therefore we shall 
calculate a spectrum only for a case of no direct signal central frequency shift, and 
supposing CID < AR,(z). For this derivation we use (3.2) and (2.24). 

In this case it is not necessary to use (2.25) and (2.26), as it is easier to apply 
the well-known series from the theory of Bessel functions: 

m 

cos(X cos 8) = Jo (X) + 2 z  (-1)" J,, (x) cos 2n8 
n=l 

(3.6) 

sin(X cos 9) = 2 x  (-1)" J,,,, (X) cos(2n + 1)8 
n=O 

(3.7) 

where J&) is a cylindrical Bessel function of the first type and order k. 

Assuming X = , and 9 = R, (t  - 2 12) , and using (2.24), 

(3.6), and (3.7) we obtain, for the spectrum of the converted signal: 

+ x( -1)"  J,,, ( x )  cos [ ( 2 4  + QD)t + qr - cpo - n~l ,r]  I el 
m 

+ x( -1)"  J,,, (x) cos [ ( 2 n ~ ,  - R D ) t  - cp, + cpo - &,t] 
,,=I 
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Figure 3.2 Spectrum of the converted signal 

It follows from (3.8) that the spectrum conslsts of components with frequen- 
cies MZ, 7fr !&, and the amplitudes of each pair of components are identical. A 
portion of the spectrum applicable to value X =  4 is shown in Figure 3.2. 

In comparing this spectrum to the known spectrum of an FM signal at a center 
frequency 6 0  -t SZD, it is easy to note that the former is obtained from the latter by 
a shft to zero frequency. Thus, thc' components of the spectrum that have appeared 
at "negative" frequencies are displaced to positive frequencies by "folding" of the 
spectrum about a vertical axis at zero frequency. As the amplitudes of spectral 
components with negative and positive frequencies are identical, and the entire 
spectrum is shifted to one or the other side by Doppler frequency, the illustrated 
spectrum is obtained. Notice also that the spectral structure will not vary with 
variation of "sign" of Doppler frequency, as each pair of components will change 
places. 

The spectral structure shown m Figure 3.2 is valid if the relationship 
SZD < R,12 applies. If this relationship does not hold, the spectral components are 
changed such that the component with frequency ( n  - l)Q, + SZD is situated on the 
frequency axis more to the right of the component with frequency nR, - RD. The 
extent of thls change depends on how much the Doppler frequency exceeds half 
the modulation frequency. 

The spectrum of the converted signal has no well-defined maxima. This is ex- 
plained by the nature of Bessel functions, whch decay slowly with increase in the 
argument. For fmed T, with increase in TIT, up to value 0.5, the spectrum spreads 
in frequency because of increase In the frequency deviation of the converted sig- 
nal. Then, with further increase in h s  ratio, the spectrum is again narrowed. 

3.1.2 Dual Sinusoidal Modulation 

The modulating function of a transmitter frequency in this case is given by 
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The modulating fimction of the converted signal phase is determined by (2.12), 
and its instantaneous frequency by (2.17). The particular aspect of dependence of 
these parameters upon time is determined by magnitudes of frequency deviations 
Aml and Ao2. 

The calculation of the converted signal spectrum is made using (2.5), (3.6), 
and (3.7), resulting in: 

4, sin ly(t) + 2 2 ( - 1 ) ~ + ~  (x2)J2. (XI) cos[(2k + l)n,,,, f 2nQml]tt j k=O 
n=l t 

si'("'~mt) A ~ T  
where X, = [ m 1 Tml I T .  

t t = t - ~ 1 2 .  

As we can see, the spectrum of the converted signal is quite complicated, each 
spectrum component depending on parameters of both modulating functions. 
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Figure 3.4 Modulating functions: (a) frequency and (b) phase of transmitted and reflected signals, 
and (c) and (d) phase of converted signal. 

modulating function of a reflected signal is shown by the dashed line. 
The modulating function of a radiated signal phase pursuant to (2.6) can be 

shown as: 

The plot of this h c t i o n  is shown in Figure 3.4(b). 
The modulating function of converted signal phase cannot be written as a sin- 

gle expression valid for any time instant. In segments fiom (n - %)Tm + = to 
(n + %)Tm, this function, from (2.12), can be written as: 
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In segments from (n + %)Tm to (n + %)Tm + T, we have 

A plot of the function F,(t,t) is shown in Figure 3.4(c). As we can see, this func- 
tion is piecewise linear, varyng between the limits -z(l - tlT,,,)/2 and 
r(1 - tlTm)/2, and symmetrical about the point t = 712. Considering (2.17) and dif- 
ferentiating (3.13) and (3.14), we obtain expressions for instantaneous frequency 
of the converted signal in segmenls from (n - %)Tm + t to (n + %)Tm: 

and in segments from (n + %)Tm to (n + %)Tm + t :  

We see that the constancy of con\ erted signal frequency on these segments is con- 
ditioned on linearity of its phase variations w i t h  each segment. 

Thus, in this case the converted signal represents a frequency-shift keying 0s- 
cillation, the frequencies of which are determined by (3.15) and (3.16). It is very 
convenient that the frequency of the converted signal in segments from (n - %)Tm 
+ t to (n + %)Tm is fmed and depends linearly on the echo delay. All this permits 
deriving the range information. The signal in segments from (n + %)Tm to 
(n + %)Tm + t, with frequency expressed by (3.16), can easily be filtered out in the 
processing, as its frequency differa, little from that of the transmitted signal. 

By virtue of periodicity of the modulating hnction, it is enough for calcula- 
tion of the converted signal spectrum to consider the two segments of the function 
F,(t,t) plot corresponding to n = 0 and n = 1. It is also expedient to change to a 
variable t' = t - 712. Then we obtarn 

The plot of thts function is shown In Figure 3.4(d). 
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The calculation of Fourier series coefficients is carried out using (2.25) and 
(2.26). The integration within limits 0 to (T, - ~ ) / 2  is carried out with (3.17), and 
within limits (T, - 2)/2 to Tm/2 with (3.18). As in &us case the function 
cosAcoF,(t',r) is even, and the function sinAoF,(t1,z) is odd, coefficients b, = c, = 

do = 0. Omitting the intermediate calculations, we obtain the final expression for 
the converted signal spectrum: 

If the inequality T, >> r applies, then also AfT,,, >> k, and (3.19) is simplified: 

Let us consider in more detail the last expression. The given spectrum has 
several relevant features (Figure 3.5). Consider the last line in (3.20). If in the 

Figure 3.5 Spectrum of converted signal with modulation by an asymmetrical sawtooth function. 



Characteristics of the Converted Signal with Different Transmitter Modulations 37 

factor {sin[n(Afr - k)]}ln(Afr - k )  the component number k corresponds to the 
current frequency rate (i.e., k = (R - SID)/Rm), we will obtain the spectral envelope 
formed by components with frequencies K2, + RD. The maximum of the major 
lobe of the envelope corresponds to faequency AorlT, + RD, and its base width is 
equal to 2R,. The maxima of the first sidelobes are -13.5 dB, and of the second 
-17.8 dB, relative to the major lobe. 

As we can see, w i t h  the limrts of a major lobe there can be no more than two 
spectral components, which contain - 85% of the converted signal energy. With 
variation of time delay the spectral envelope is displaced on the frequency axis, 
and with Afi = k only one component with frequency kt2, + QD remains in the 
spectrum. Consider in more detail the reason for this. As follows from (3.13) with 
T, >> r and Afi = k, the phase of the converted signal within the limits of the 
modulation period is inflected linearly on 2xk, and at the start of each period the 
phase values are identical. Thus, in the absence of motion the converted signal 
represents a continuous slne wave without phase jumps. The period of this sine 
wave equals T,lk and the spectrum, as is known, consists of one component. With 
a constant relative target velocity [(2.13), (2.14)], the linear phase change RDt is 
added and the spectral component is displaced by the Doppler frequency. 

One more idiosyncrasy of the given spectrum is that the amplitudes of spectral 
component pairs with frequencies MZ, k RD are not identical. The reason for this 
can be easily explained. In essence the converted signal represents a succession of 
radio pulses with a rectangular envelope, the duration of which is equal to the re- 
currence interval. Therefore, the spectrum of the converted signal is the same as 
for a succession of such radio pulses. It is known that the envelope of a spectrum 
of rectangular pulses succession is described by a function (sinx)lx, and the spec- 
tral envelope maximum is at the carrier frequency. Thus, in spite of the fact that 
the instantaneous frequency of th~e converted signal does not fall in the area of 
negative frequencies, a definite portion of its spectrum falls in this area (Figure 
3.5). With folding of the spectrum about zero frequency, the components with 
negative frequencies are located near the corresponding components with positive 
frequencies. The second line in (3.20) indicates that spectrum components with 
negative frequencies "fold" to the area of positive frequencies. 

Thus, there arises a question: on which side from the frequency kt2, are the 
larger and smaller spectrum components situated? In other words, is the frequency 
of the larger spectral components MZ, + RD or MZ, - RD? It turns out that h s  
depends not only on whether the target approaches or recedes (i.e., on the "sign" 
of Doppler frequency), but on the ?lope of the sawtooth modulating function. 

To explain thls we consider Figure 3.6. In Figure 3.6(a), the plots of con- 
verted signal phase changes F,(t,r) for a fvred target are shown, the sawtooth ris- 
ing on the left and descending on the right. In Figure 3.6(b), the same plots are 
shown, but with an approaching target. The dashed line is the additional phase 
component originating from motion. The negative derivative of this line is deter- 
mined by decrease in delay as the target approaches. As we can see, the steepness 
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Figure 3.6 Graphs illustrating the influence of Doppler effect on a spectrum of converted signal 

of the segment a-b of function F,(t,r) was reduced for the plot at the left and was 
increased for the plot on the right. Therefore, on the left, the frequency of the con- 
verted signal was decreased by the Doppler frequency and the larger spectral com- 
ponents have frequency kC2, - OD. On the contrary, at the right, the frequency of 
the converted signal was increased and the larger spectral components have fre- 
quency MZ, + aD. In Figure 3.6(c), the same plots are shown corresponding to 
receding targets. The situation here is reversed compared with the previous case. 
Thus, this property of the converted signal spectrum allows us to determine the 
relative velocity of the target and direction of its motion. 

As was already stated, in real SRR the ratio T, >> r usually applies, and all 
calculations of parameters of the converted signal are based on this conjecture. For 
example, (3.20) was obtained from (3.19) in this manner. Actually, this means that 
we neglect the segments fi-om (n + %)T, to (n  + %)T, + r of the converted signal 
as being negligible compared with the period of modulation. 

In this connection it is desirable to have a quantitative assessment of admissi- 
bility of ratio T, >> z. This estimation is easy to perform using (3.19), which is 
valid for any ratio of TIT,. The criterion for assessment can be the extent of varia- 
tion of the converted signal spectrum with the ratio dT,. 

For calculation we assume any fixed value Afi, for example Afi = 10. Then in 
the spectrum, according to (3.20), only the component with frequency 10n, + aD 
and relative amplitude of unity is present. The calculation of the spectrum from 
(3.19) with particular values TIT, permits us to judge the differences from those 
based on (3.20) and to determine acceptable values of TIT,, at which it is possible 
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to consider the inequality T, >> T to be valid. The results of the calculations are 
listed in Table 3.1, where k is number of the spectral component and y = dTm. 

Table 3.1 

Variation of Spectral Components with Ratio y = T I T ,  

The values of amplitudes of the corresponding spectral components are given in 
decibels relative to unity. As we can see in the table, already for y = 0.05 the spec- 
tral components k = 9 and k = 11 are at a level -26 dB relative to the maximum. 
For y = 0.1, components k = 9 and I 1 as well as k = 8 and 12 are significant. 

Thus, it is possible to consider the inequality T, >> z valid if the period of 
modulation is greater than 10 timez the maximum time delay of the echo signal. In 
radio-wave SRR this ratio is easil?, obtained, as a rule, in the absolute majority of 
cases. In ultrasonic SRR this ratio us obtained only with great difficulty, especially 
during operation in a gaseous medi urn. 

The spectrum of the converted signal when Tm >> 7 does not apply is subject 
to the same relationships as are established above. However, because of reduced 
duration of the converted echo in segments from (n - %)T, + z to (n + !h)T,, the 
major lobe of spectrum envelope is reduced and the spectral components applica- 
ble to frequency in segments (n + ?)Tm to (n + %)Tm - z increase. The spectrum is 
distorted to the greatest degree when z = Tm/2. 

3.2.2 Modulation with Non-Isosceles and Symmetrical Sawtooth Functions 

For modulation with a non-isosceles sawtooth hnction [Figure 3.3(a)] the modu- 
lating function of transmitter frequency can be written as: 

where n is the number of a segment on the time axis, within which lies the value of 
a current time t ;  and a is a coeffic~ent between 0.5 and 1, such that for a = 0.5 the 
non-isosceles hnction becomes symmetrical and for a = 1 asymmetrical. We will 
perform analysis of the converted signal assuming that the condition T,,, >> z is 
satisfied. Then, on the basis of (2.19) we obtain at once 
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Using (2.22), we obtain the expression for instantaneous frequency of the 
converted signal: 

In this case the converted signal represents frequency-shift keyed oscillations, the 
frequency of which varies by jump and is equal to 

Aoz 
in the segments with even n 

I t:; I in the segments with odd n R, = QD - 

The spectrum of the converted signal is calculated in the same manner as with 
modulation using an asymmetrical sawtooth function. Neglecting subproducts, we 
write the final expression for converted signal spectrum: 

sin xAf z 
U[ = U[ - 

xAf z 
cos(a,t + cp, - (Po)  

sinx(Af z + ka) sinx[Af z- k(1-a)] 
+( - I )~  (1-a) 

x[~fz-k(1-a)] 

As expected, there are two maxima in this spectrum (Figure 3.7) in the area of 
frequencies (3.24) and (3.25). As contrasted to the spectrum for modulation by an 
asymmetrical sawtooth function, the major lobes of the spectral envelopes in the 
area of these frequencies are broader. This is explained by the fact that the dura- 
tion of segments of the converted signal with frequencies (3.24) and (3.25) is less 
than a period of modulation. 
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Figure 3.7 Spectrum of converted signal with modulation by a non-isosceles sawtooth function. 

Assuming in (3.21) - (3.26) that a = 0.5, we obtain similar expressions for 
modulation with an isosceles sawtooth function: 

From (3.29) it follows that the frequency of the converted signal w i t h  the limits 
of one half-cycle is fmed and its values in adjacent half-cycles differ by 2aD. 

The spectrum of the converted signal can be written in the following way: 

nln ( t ,  71 = 

sin xAf r 
UI = Ul ---- 

nAf T 
cos(%t + 9, - 90) 

$2, + (-1)" - 
T m  2 A w r l  
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Figure 3.8 Spectrum of converted signal with modulation by an isosceles sawtooth function. 

In Figure 3.8, this spectrum looks like the spectrum for modulation using an 
asymmetrical sawtooth function. However, the maxima of the spectrum corre- 
sponds to twice the smaller value of product Afi. This is explained by the fact that 
the slope of a symmetric function is double that of an asymmetrical one. The am- 
plitudes of spectrum component pairs with frequencies MZ, + QD and MZ, - OD 
are identical. 

3.3 DISCRETE MODULATION 

One of the major problems that should be solved in SRR design is that of deriving 
a more linear and stable modulation characteristic of the FM oscillator. One of the 
possible paths to the solution of this problem is applying a frequency synthesizer 
as the FM oscillator. Controlling in an appropriate way the frequency of the syn- 
thesizer output, it is possible to realize ideal precise frequency control for any 
modulation. For example, changing the frequency after a definite time period by a 
constant value makes it is possible to obtain ideal linear modulation. However, in 
this case the output signal appears quantized in frequency. 

In Figure 3.9(a) there is a plot of synthesizer frequency against time, applica- 
ble to modulation with an asymmetrical sawtooth function. Here it is appropriate 
to point out that at transferring from one frequency to another there should not be 
phase discontinuity in the output of the synthesizer; otherwise there will be com- 
plete destruction of the converted signal. It is apparent that the same dependence 
will be obtained by modulating the usual oscillator with an ideal linear modulation 
characteristic for a "stepping" asymmetrical sawtooth function. 

Thus, as discrete modulation is techcally possible, it is necessary to consider 
properties and arguments of a converted signal for such modulation. We will con- 
duct analysis of the converted signal using an example of asymmetrical sawtooth 
modulation. 
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Figure 3.9 Discrete modulating function and section of the converted signal 

Let us assume that in a period of modulation T, there must be q discrete val- 
ues of frequency, and that the ratio T,/q >> r applies. Thus, a ratio T, >> T cer- 
tainly applies. How will the converted signal appear in this case? 

With the usual modulation the converted signal repeats sections of a sine 
wave of duration T,. With discrete modulation, according to (2.20), the phase of 
the converted signal is changed by a modulating function. Therefore, the converted 
signal will appear as a stepping s~ne  wave [Figure 3.9(b)]. If the sine wave with 
such digitization does not loose 1t.s shape (i.e., remains "on average" as a sine 
wave), the stepping is easily removed by appropriate filtering of the converted 
signal. This qualitative reasoning allow us to draw a conclusion about the necessity 
of deriving quantitative results. 

In essence the problem is reduced to determination of an indispensable mini- 
mum number of quantization steps in the period of modulation, for which the con- 
verted signal distortion is within tolerance limits. Here it is important to note that 
the given problem has n o b g  in common with the problem described with the 
known Kotehlcov theorem. This rheorem establishes the connection between the 
width of a continuous signal spectrum and the number of samples necessary for 
discrete representation of this signal. In other words, here the signal is already 
present and is introduced in analytical aspect. 

In our case the discussion is about signal conditioning with admissible distor- 
tions. A discrete process is introduced in one signal (modulation), and the distor- 
tions are completely calculated for the other (converted) signal. 

First of all, we note the clear fact that if the duration of each quantization step 
is commensurable with a period of'the sine wave of the converted signal (not with 
a period of modulation!), there a511 be a significant distortion of the converted 
signal because of phase jumps. Thins, the following inequality should be met: 

T m  T m  - > -  o r q > k  (3.3 1) 
k q 
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where k is the number of the spectral component with maximum frequency (i.e., 
applicable to the maximum measured range interval). 

For further analysis, we will represent one period of a stepping modulating 
function t by the sum of two functions (Figure 3.10): 

where n2 is the period number of the second function, which is Tm2 = Tm/q. If the 
limits of the variations in the definition of the first function are equal rt0.5, then for 
the second they are kO.514. 

With such definition of the modulating function, the spectrum of the con- 
verted signal is equal to the product of the spectra defined by (3.19) or (3.20), de- 
pending on whether the ratio Tm >> z is valid or not. The fact is that with a large 
number of quantization steps this ratio can be valid for the first function and not 
for the second. 

Let us note also that in calculating parameters of the second spectrum it is 
necessary to have the value of products Ahr = Afilq, as the amplitude of the sec- 
ond modulating function is q times less than the first. 

For calculation of the spectra we will take into account also the following cir- 
cumstance. If the condition q > k is always satisfied, for any value z, 

Therefore, in the second spectrum the basic role is played by the first term, as all 
others are much less, and the spectrum of the converted signal is equal to the prod- 
uct of the first spectrum and the amplitude of the first member of the second 
spectrum. 

Let us consider now two cases, when the condition Tm/q >> z is valid and 
when it is not. Let us assume that condition Tm/q >> z is satisfied. Then the ampli- 
tude of the first member of the second spectrum is determined by (3.20) and is 
equal to 

Figure 3.10 Representation of the discrete modulating function by the sum of two sawtooth func- 
tions. 
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sin ( x ~ h t )  sin(xk l q )  -- - - z 1-0.166(4]  
x AJ; 2 19 

For approximation of this functioru we used the known relationship 

sin x TC 
- = 1 -0.166x2 +0.0076x4 for 0 < x < - 

X 2 

Assuming, for example, that in (-1.32) (sinx)lx 2 0.95, we obtain qlk 2 6. Accord- 
ingly, for (sinx)lx = 0.99, qlk x 12. 

Now we assume that the condition T,/q >> t is invalid. The greatest departure 
from this condition is reached at Tm2 = Tmlq = 22. Having taken advantage of 
(3.19) and allowing (3.331, we obhin 

As we can see, in this case the requirements for the ratio qik are half as strict as for 
the previous case. This is explained by the fact that in implementation of this ratio 
the converted signal consists of sections of a sine wave of duration Tm2/2 and fie- 
quency Ah. The phase of sine waves in adjacent sections differs by 1 80°, and this 
is equivalent to twice the number of quantization steps. 

From these calculations the deduction follows that the digitization of a modu- 
lating function does not practical1 y change the parameters of the converted signal, 
if the number of quantization steps in a modulation period is at least an order of 
magnitude greater than the maxlmurn number of the spectral component of the 
converted signal (i.e., qlk 2 10). 

3.4 EFFECTS OF TRANSMITTER MODULATION NONLINEARITY 
ON CONVERTED SIGNAL PARAMETERS 

The modulation characteristics of all known FM oscillators are nonlinear to some 
extent. The typical modulation characteristic is a curve whose derivative decreases 
with increasing frequency (Figure 3.1 1). The magnitude of the nonlinearity is usu- 
ally defined as a ratio of maximum error in modulation characteristic to its width 
(i.e., to a tuning frequency range) This ratio is expressed as a percentage. 
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Figure 3.11 Typical modulation characteristic. 

In some cases, especially for oscillators with large tuning ranges (a few GHz), 
the modulation characteristic represents a log-log curve with a set of short seg- 
ments, between which the derivative changes not only in magnitude but also in 
sign. The departure fiom its average value can then reach a few percent of the os- 
cillator tuning range. 

To elaborate any general theory of the effects of nonlinear modulation charac- 
teristic on the converted signal makes no sense for several reasons. First, it is very 
difficult to obtain an analytical expression describing a real modulation character- 
istic. Second, even if that can be done, it is very difficult to calculate the converted 
signal, for h s  case, and most importantly, this effort makes no sense at all, as the 
oscillator modulation characteristic varies during operation. 

At the same time, there is definite interest in making an estimate of the effect 
of modulation characteristic nonlinearity on the converted signal. We will make 
this estimate as follows. Let us consider the modulation characteristic of the oscil- 
lator as ideally linear, and to the linear modulation function we will add a term 
representing nonlinearity. Then the calculation of the converted signal will be re- 
duced to calculating thls signal with dual modulation. The method of conducting 
this calculation is particularized in Section 2.5. 

As a linear modulation function it is most convenient to use an asymmetrical 
sawtooth function. With this modulation, as was shown above, the converted sig- 
nal has the most compact spectrum, considerably easing calculation. As the error 
term we may use any monotonic even function. The choice of h s  function is de- 
termined primarily by convenience and by the possibility of a solution. 

Let us use as the accessory term the half-period of a cosine. Then the modulat- 
ing function of oscillator frequency can be introduced as 

t n 
y(t)=-+vcos-t for - T m / 2 < t  I T m / 2  (3.36) 

Tm Tm 

where v is a coefficient describing nonlinearity of the modulation characteristic. 
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As we can see, a dual modul.ation takes place in this case. For further calcu- 
lation let's assume that the ratios $,,, >> z and A ~ T  = k are valid, so that, as was 
established above, there is only orre component with frequency MZ, + QD in the 
spectrum of the converted signal. Thus, the calculation will be considerably sim- 
plified and distortion of the spectrum of the converted signal will be most obvious. 
Let us assume also that QDr + cp, - = 0. This is acceptable, as the given problem 
is not to obtain a precise expression for the spectrum, but only an estimate of pos- 
sible distortions. It also will simplily calculation. 

Using (2.22) and (3.36), u.e obtain the expression for instantaneous fre- 
quency of the converted signal 

Q, ( t ,  t) = Q, lAf f t  - vnAf rsin(nt /T,)I (3.37) 

For calculation of the spectrum we use (2.31), (3.6), (3.7), and (3.20). Skipping 
intermediate, elementary enough calculations, we produce a final output: 

Let us perform calculations WI th these formulas. We assume that the modeled 
nonlinearity of the modulation characteristic is -0.02 (i.e., only 2%). Then 
v = 0.02. From (3.37) we find that the relative variation of instantaneous frequency 
at the ends of the modulation period is 

As we can see, even the small noitlinearity of modulation characteristic results in 
considerable variation of instantaneous frequency of the converted signal. 

The spectrum of the converted signal is also exposed to considerable distor- 
tion. From (3.38) it follows that with an ideal modulating characteristic (v = 0) 
there is one component in the spectrum with frequency kS2,, applicable to the as- 
sumed condition A ~ T  = k. 

In Figure 3.12 the results of calculation with (3.38) are shown. On the ab- 
scissa is the number of the indivdual spectral component for a linear modulation 
characteristic. On the ordinate the relative amplitude of spectral components is 
plotted. The curves shown in this plot naturally are determined by the assumed 
approximation. However, it is not details of the curves but the tendency of their 
variations that are relevant in this case. 

As we can see, with an increase in k the basic component is reduced and near 
it there are two components whose frequencies are (k + l)Rm. The magnification 
of spectral distortion with increaqing instantaneous frequency of the converted 
signal is explained by increase in the absolute value of instantaneous frequency 
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change. So for k = 1 the instantaneous fkequency will vary by -0.06 R, , and for 

This calculation allows us to draw the conclusion that the modulation charac- 
teristic of the transmitter is one of its major parameters. The linearity of this char- 
acteristic and its stability depend on the structure of the converted signal process- 
ing block, the measuring error of range and speed, the required magnitude of fie- 
quency deviation, and many other SRR parameters. 

Figure 3.12 Distortion of the spectrum of the converted signal. 



Chapter 4 

Integrated Methods of Converted Signal 
Processing 

4.1 GENERAL DESCRIPTllON 

Integrated methods of converted slgnal processing are defined to be methods in 
which all signal parameters (i.e., amplitude, frequency, and phase) will be utilized 
for processing. 

As follows from material in Chapter 2, the information on range and relative 
velocity of the target is contained m the phase, and therefore in the frequency of 
the converted signal. It is impractical to utilize the amplitude of the converted sig- 
nal for deriving range, as thls depends not only on range but also on the magnitude 
of the reflected signal, which, in turn, depends on the effective cross section of the 
target. 

Use of the range dependence of the instantaneous frequency of the converted 
signal is the most commonly used method of the signal processing in SRR. This is 
because range finding by measuring a frequency difference between transmitted 
and reflected signals is straightforward, though it has not always been imple- 
mented correctly. For many years the theory and the practice of FM SRR was de- 
veloped on the basis of this method of processing, achieving significant success, 
although not without errors and unexpected peculiarities. 

For example, the author of one patent based his invention on the fact that the 
instantaneous frequency of the converted signal depends on range continuously 
and linearly (evident from the drawing). Therefore a "simple and effective" 
method of range fmding was proposed: to pass the converted signal through a nar- 
rowband filter with a bandpass much less than the modulation frequency. Thls 
filter was offset from the instantaneous frequency of the converted signal by an 
amount depending on the target range. As the filter was narrowband it was possi- 
ble to relate the instantaneous frequency to the range with great fidelity. The mis- 
take of the author of this patent is obvious. It is enough to consider the converted 
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signal spectrum: the signal at the output of the filter will occur only when it is 
tuned to frequencies of the target spectral component. At the same time the idea of 
the author is not lacking in common sense; it is necessary only to apply another 
method of converted signal processing (which will be discussed in Section 4.4.2). 

For a long time in many scientific publications, the problem of an ostensible 
inherent granularity of range readout in FM SRR and a resulting error bound was 
considered. However, the appearance of this error is conditioned on rather coarse 
methods of processing the converted signal. Hence, this error can be considered as 
dependent on the processing method, but inherent in some cases. 

Phase-frequency processing of the converted signal has one very relevant and 
fundamental feature: with this method of processing it is impossible to realize 
resolution of targets in range. Therefore this method can be applied only in cases 
where (a) it is known that there is only one target in the beam, or (b) it is unneces- 
sary to resolve targets in range. 

It is widely known that FM SRR is used in radio altimeters and liquid-level 
meters, in systems for collision avoidance in transportation facilities, in parking or 
mooring, and in measuring distances to walls of buildings or artificial reflectors 
(for example, comer reflectors). The need for range resolution often precludes the 
application of FM SRR in security systems. 

Let us consider this problem in more detail. Assume that there are two targets, 
which are at random ranges from the radar within its operating zone. In this case 
three signals (Figure 4.1) act on the mixer: a direct signal Ud, and reflected signals 
UrI fiom the first target and Ur2 fiom the second. The vector of the direct signal is 
considered futed. Then the angles cp,,(t,zl) and cpQ(t,z2) are given by (2.10). The 
total vector is 

u,' = (U,, +Url coscp,, +Ur, ~oscp,,)~ +(Url sincp,, +Ur2 ~incp,,)~ (4.1) 

Assuming that U, >z Url,, and that the mixer consists of a nonlinear element 

and lowpass filter, we obtain the converted signal at the output of the mixer: 

Figure 4.1 Phasor signals from direct component and two targets. 
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From (4.3) it follows that the principle of superposition of the converted signals is 
applicable (i.e., the voltage output of the mixer is the sum of the voltages of the 
converted signals of the individual targets). As these signals exist simultaneously, 
it is possible to distinguish them only through differences in their spectra. 

Let us consider the possibilities of using the converted signal parameters for 
measuring range and velocity. For ths  purpose we will refer to the formulas of 
Chapter 2. First, we notice that there appears in all formulas defining parameters 
of the converted signal the product of a frequency deviation of the transmission 
and target-echo delay time Aot. 'Therefore, two methods of using the converted 
signal parameters are possible. 

The first method assumes that the deviation is fixed. Then it is possible to util- 
ize dependence on t of the converted signal frequency deviation, its instantaneous 
frequency, or phase shift for a modulation period. 

The second method is that with variation in r, some parameter of the con- 
verted signal is maintained constant by varying the frequency deviation. Hence the 
magnitude of the deviation (technically the magnitude of a modulating voltage or 
current) is a measure of the delaw time (i.e., target range). In thls it is naturally 
assumed that the modulation characteristic of the transmitter is stable. 

A discriminator sensitive to the applicable parameter is necessary for opera- 
tion of a deviation feedback system. The simplified block diagram of an SRR with 
this method of processing is shown in Figure 4.2. 

Instantaneous frequency and, accordingly, phase shlft also depend on relative 
velocity (i.e., from the Doppler effect). On the one hand this allows us sirnultane- 
ously to obtain range and velocity. But, on the other hand, it can produce an addi- 
tional error in range measurement if we fail to apply the applicable measures for 
the separation of Doppler effect frlom range measurement. 

Transceiver Amplifier Discriminator 

Display tl 
Figure 4.2 Block diagram of SRR wlth Jeviat~on feedback system. 
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4.2 EFFECT OF PARASITIC AMPLITUDE MODULATION OF THE 
TRANSMISSION ON OPERATION OF THE SRR RECEIVER 

4.2.1 General Description 

As was noted in Chapter 2, one of features of the FM SRR receiver is use as a het- 
erodyne signal of a part of energy of the transmission. Even in dual-antenna sys- 
tems, part of the transmission couples directly between the transmitting and receiv- 
ing antennas. This has been termed transmitter spillover. The presence in the re- 
ceiver of these signals creates definie problems in receiver operation. As W. K. 
Saunders notes in Skolnik's Radar Handbook [l] "the history of CW radar shows 
a continuous attempt to devise ingenious methods to achieve the desired sensitivity 
in spite of spillover." 

More recently the seriousness of this problem has been significantly reduced. 
Nevertheless, it had previously been one of the most relevant problems affecting 
SRR design. Therefore, before considering different methods of converted signal 
processing, it is necessary to analyze the influence on receiver operation of trans- 
mitter spillover. 

At frst we will consider the dual-antenna version of the block diagram with a 
shift of the direct signal center frequency (Figure 2.2). Here, because of poor de- 
coupling between antennas, a part of the transmission enters the receiving antenna. 
As spacing between antennas is insignificant, this signal is equivalent to a target 
echo from zero range. If there were no frequency shtft of this spillover it would not 
introduce any special hazard into the receiver. It could only, being added to the 
direct signal, change the operating point of the mixer. But the mixer operating 
point can be always corrected, taking into account the level of spillover. 

If there is frequency shift, two FM signals with in-phase modulation act on the 
mixer, and the center frequencies of these signals differ by the magnitude of an 
offset 60. As a result, a sinusoidal signal with frequency 6 0  appears at the mixer 
output. Thls signal can seriously affect receiver operation. Obviously, t h s  signal 
cannot be filtered, as it is at intermediate frequency. It is possible only to cancel it, 
using for this purpose a signal with frequency 6 0  available in the block providing 
fiequency shift of the direct signal. 

In all events, the decoupling between antennas should be of the same order of 
magnitude as target echo attenuation. Inevitably this is a major deficiency of this 
SRR version. 

The signal of any unrnodulated or FM oscillator is always accompanied by 
parasitic fluctuating amplitude and phase modulation. Because of an incidental 
phase modulation, the frequency of the oscillator fluctuates, but this does not have 
any influence on SRR operation. 

Nor does fluctuating amplitude modulation cause noticeable effects on re- 
ceiver operation, in spite of the fact that there is amplitude detection of the direct 
signal in the mixer. This can be explained as follows. The spectral density of 
an amplitude fluctuating modulation spectrum for the majority of oscillators is 
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approximately -1 50 to -1 60 dBflh. The attenuation of a target echo relative to 
the transmission varies for SRR approximately from 50 up to 110 dB. The direct 
signal is reduced relative to the transmission by approximately 30 dB. The equiva- 
lent noise bandwidth of the receiver usually does not exceed 10 kHz. Let us con- 
sider that the transmission factor of the mixer in its conversion and detection re- 
gimes are identical. It is actually not but for an estimation ths  is adequate. Thus, 
the noise power at the mixer output, relative to power of the radiated signal is 
-150 - 30 + 40 = -140 dB, or 30 dB less than the power of the converted signal. 

A much more serious danger for the receiver is introduction of parasitic am- 
plitude modulation (PAM)l, whlch tracks with frequency modulation. The coeffi- 
cient of ths  PAM can reach severid percent. Thus, the PAM signal power is 30 to 
40 dB less than the power of the direct signal, or some 50 to 60 dB less than the 
power of the transmission. Hence the PAM signal can exceed a useful signal by 40 
to 50 dB. Obviously, a parasitic signal with such level above a usefbl one will 
completely destroy the normal operation of the receiver if necessary actions to 
prevent this are not taken. It is nec essay to note that the above-mentioned data is 
referring to the worst case. 

The PAM signal structure is defined by the amplitude-frequency characteristic 
of the FM transmitter. A typical amplitude-frequency characteristic is shown in 
Figure 4.3(a). As we can see, it is a domed curve with a maximum at the center 
frequency and with a large degree of symmetry about that frequency. The signal 
power reduction at the edges of tuning range usually does not exceed 5% to 7 % of 
the maximum. A more variable amplitude characteristic is shown on Figure 4.3(b). 
It has a random nature and is characterized by fluctuations of the oscillator regime. 
The level of these fluctuations is usually 30 to 40 dB below the regular PAM 
component. 

The characteristics of the PAM signal are defined by both the shape of the 
transmitter amplitude characteristic and its modulating function. Relative smooth- 
ness and good symmetry of the amplitude characteristic cause the overwhelming 
part of the PAM signal energy (901% to 95%) to be concentrated in the first three 
or four harmonics of its spectrum. The remaining fraction of signal energy will be 
distnbuted rather uniformly among a large number of higher harmonics. 

Figure 4.3 Typical amplitude-frequency t:haracteristic. 
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Af=100 MHz 

0 3  hf=5 MHz 
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Figure 4.4 Typical PAM spectra at mixer output. 

As an illustration, the real spectrum of the PAM signal at the mixer output of 
a radio-frequency block of an SRR is shown in Figure 4.4. The SHF block was 
based on the standard single-antenna version (Figure 2.4). The FM generator is a 
Gum diode operating at 8-rnm wavelength, a horn antenna is used with half-power 
beamwidth 6", the mixer is one-stage with diodes, and asymmetrical sawtooth 
voltage modulation was used. 

As we can see, the second harmonic of the PAM spectrum is maximum at a 
frequency deviation of 100 MHz, because of symmetry of the oscillator amplitude 
characteristic. Also, the spectrum in the area of the first harmonics is slightly wider 
than that of modulating signal. The voltage of higher harmonics does not exceed 
100 pv.  

For a frequency deviation of 5 MHz, the nature of a spectrum changes. With 
such deviation it is possible to consider the modulation characteristic linear, and 
therefore the PAM signal reproduces the shape of a modulating signal (i.e., an 
asymmetrical sawtooth). Accordingly, the spectrum of the incidental signal to 
some extent reproduces the shape of the modulating signal spectrum. The largest 
harmonic now becomes the first, and the voltage of harmonics beyond the third 
does not exceed 10 pV. 

For estimating the levels of converted and PAM signals we will show the re- 
sults of measuring signals obtained at the mixer output of the same UHF block. 
The converted signal was measured for the following targets: 

(a) Reflection from a smooth metallic sheet, at 2m range from the antenna 
aperture, producing a converted signal voltage of approximately 70 mV; 

(b) Reflection fiom a reinforced-concrete wall, 10m range, 15 mV; 
(c) Reflection from a brick building, 80m range, 0.8 mV. 

The frequency deviation in these cases was 150,30, and 5 MHz, respectively. 

4.2.2 Methods of Decreasing PAM Signal Effects on Receiver Operation 

Methods of reducing PAM signal influence can be divided into two categories: 
direct and indirect. Direct methods are defined as those that reduce the PAM level 



Integrated Metho, is of Converted Signal Processing 55 

of the oscillator output or the direct signal. SHF signal power-level limiting de- 
vices or automatic power-level stabilization may be used for this purpose How- 
ever, as a rule, these methods do not give the desired result but only complicate the 
SHF unit. Limiting devices react only slightly to minor variations of power and 
decrease the PAM factor by such small factors that they are completely inadequate 
in most cases. 

Automatic power-level stabil ~zation systems require very large amplification 
in the feedback circuit because of the low error signal. It is thus difficult to provide 
system stability. Besides, even if the oscillator were to have no PAM at all, it 
would arise with FM because of the resonant-frequency behavior of the direct sig- 
nal channel. 

Indirect methods of reducing PAM influence are most effective. Because the 
useful and parasitic signals are present at the mixer output simultaneously, they 
can only be separated by using differences in their spectra. The best approach in 
this respect is the system with frequency shift of the forward signal (Figure 2.2). In 
this version the spectrum of the PAM signal at the mixer output is in the region of 
the modulation frequency, while the spectrum of the useful signal is in the region 
of frequency 6 0 .  Therefore it is possible to provide good separation of these sig- 
nals with a simple filter. The miuin danger for the receiver in this version is the 
spillover between the transmitting and receiving antennas. 

The easiest way to reduce th~e level of the parasitic signal is to suppress sev- 
eral first spectrum components of the converted signal, where the basic energy of 
the PAM signal is concentrated. So, for example, for a signal consisting of an isos- 
celes sawtooth, 99% of energy i.; concentrated in the first three harmonics of its 
spectrum. Therefore this simple method appears quite effective in most cases. Ob- 
viously in h s  approach there is a dead band, the extent of which is defined by the 
magnitude of the fiequency deviation and the number of saturated components. If 
the dead band is too great, it is pcwsible to divide the operation of the receiver into 
two regimes: short ranges, where the ratio of a useful to parasitic signals is large 
enough without suppression of the first components, and longer ranges at which 
suppression is required. The reduction of PAM signal can be made effective 
enough by applying an irregular liequency response curve to the converted signal 
amplifier. 

As is known, for an irregular target the power of its echo varies inversely with 
the fourth power of range. The noaxirnum of the converted signal spectrum is dis- 
placed in frequency by an amount that is directly proportional to range. Therefore 
it is necessary to increase: the gal n of the converted signal amplifier by 12 dB per 
octave to maintain the converted signal level more or less constant. For this pur- 
pose its fiequency response should be appropriately reshaped. Thls is equivalent to 
the sensitivity time control used in pulse radar. 

For short-range radar system.;. a reduction of the effective target cross section 
often accompanies reduction in rimge. Thls is explained by reduction in the area of 
the illuminated surface, especially with narrow antenna patterns. In this case, the 
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power of a target echo varies approximately in inverse proportion to the third 
power of range, and the gain of the amplifier is increased by 9 dB per octave. 

As the gain of the amplifier is reduced with decreasing fiequency, there is a 
suppression of the most intense harmonics of the PAM signal spectrum. It is pos- 
sible to judge performance of dus suppression with simple calculations. Let us 
assume that the power of a target echo varies inversely with the third power of 
range. Then the normalized frequency response of the converted signal amplifier is 
written as 

where F,, is the frequency applicable to the last component of the converted sig- 
nal spectrum. In terms of the modulation frequency 

where k is the number of the current component and n is the number of the largest 
component of the converted signal spectrum. 

Let us assume that the amplitude characteristic of the oscillator is linear and 
that the modulation takes the form of an asymmetrical sawtooth function. This is 
the worst case, in which the largest parasitic signal is received. The attenuation of 
the parasitic signal is 

7 

where Uk is the effective voltage of the kth harmonic of the parasitic signal spec- 
trum at the output of an amplifier with an irregular amplitude-frequency character- 
istic, and U ,  is the effective voltage of the parasitic signal at the amplifier output 
with a flat amplitude-frequency characteristic. This voltage is equal to the rms 

voltage of a sawtooth signal with unit amplitude, which is 11 6 
As is known, the Fourier-series expansion of a sawtooth function with unit 

amplitude is expressed as 

Then, with allowance for (4.5), the effective voltage of kth harmonic of the para- 
sitic signal spectrum at the amplifier output is 
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Substituting (4.8) in (4.6), we obtain 

Figure 4.5 shows as curve 1 la plot of the coefficient A, based on (4.9). A simi- 
lar calculation for modulation usvng an isosceles sawtooth function gives the fol- 
lowing expression for the coefficient A 

The resulting plot is shown as curve 2 in Figure 4.5. As we can see, the amplifier 
with an irregular frequency response decreases the parasitic signal by 20 dB or 
more. 

With a linear oscillator amplitude characteristic the available decrease is not 
so large (curve l), but a linear amplitude characteristic corresponds to a small fre- 
quency deviation, for which the P A M  coefficient is small. With large values of 
frequency deviation the amplitude characteristic is more or less symmetrical, and 
therefore the PAM waveform even with modulation by asymmetrical tooth volt- 
ages comes nearer to an isosceles sawtooth. A large reduction of the parasitic sig- 
nal (curve 2) can be reached in thus case. 

A rather effective method of' reducing the PAM signal is to use rejection fil- 
ters attenuating the frrst, most intensive harmonics of the PAM spectrum. How- 
ever, up until the present time this method has not found wide application because 
of serious engineering difficulties in its realization. First, the rejection band should 
be as small as possible. Otherwise, at small Doppler frequencies there will be sup- 
pression of the converted signal. Therefore, the Q-factor of filter resonant elements 
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Figure 4.5 Attenuation of parasitic sigrual. 
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should be rather high - about several hundreds or greater. In the range of custom- 
ary modulation frequencies, from hundreds of hertz up to tens of kilohertz, it is 
very difficult to realize such Q-factors. 

Second, when the rejection band is narrow, rigid requirements are placed on 
mutual stability of filter resonance frequency and modulation frequency. Of 
course, these requirements can be satisfied with crystal filters and quartz-crystal 
control of the modulation frequency. However, such filters are very cumbersome 
and expensive. 

The so-called synchronous rejection comb filter, based on switched capaci- 
tors, is free of all these deficiencies. The detailed theory of synchronous filters 
based on switched capacitors is explained in the special literature of the theory of 
active filters, and is not considered here. High stability of the comb-rejected fre- 
quencies, with a Q-factor of some thousands and simplicity of realization, favora- 
bly distinguish these filters from analog and digital rejection filters. 

In Figure 4.6 the block diagram of one of the optional versions of such a filter 
is shown. The principle of operation of this filter is as follows. The sum of the 
usehl signal and a periodic disturbance is applied to the input of the sample-and- 
hold block. From the output of thls block, the voltage, sampled in time and fvted at 
a level, passes to the synchro-switched RC-filter composed of N identical capaci- 
tors, controlled with switches, and thereafter to resistor R. The operation of the 
filter is controlled by a pulse distributor, to the input of whlch a clock signal gen- 
erator reference voltage is applied. The pulse repetition fkequency of this oscillator 
exceeds by the factor N the rejection frequency for the first harmonic of a distur- 
bance. The number of rejection channels N, of such filters depends on the number 
of switched capacitors and is set to N, 5 Nl2. The rejection band at the -3 dB level 
is identical in all rejection channels and is Af = 1IzNRC. For example, with 
N =  16, R = 100 WZ, and C =  10 nF, Af = 20 Hz. The depth of rejection is about 60 
dB. In Figure 4.7 the sample normalized amplitude-frequency characteristic of the 
filter is shown. This characteristic is practically unchanged when the clock signal 

switch Output 11 

I 1 . 1 1  

Pulse distributor Clock generator 

Figure 4.6 Synchronous rejection comb filter based on switched capacitors. 



Integrated Method: of Converted Signal Processing 59 
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Figure 4.7 Frequency response of synchronous comb filter. 

generator frequency changes by a reasonable factor. Accordingly, the frequency of 
each rejection channel is changed by that same factor. 

Hence, if the clock signal generator is synchronized to a modulating signal or 
if the clock pulses are reshaped from a modulating signal, the frequencies of rejec- 
tion channels will correspond precisely to frequencies of harmonics of the PAM 
signal spectrum. 

As we can see, the application of a synchronous rejection filter enables effec- 
tive suppression of a PAMI signal by rather simple means. Certamly, together with 
the PAM signal, the applicable lrarrnonics of the spectrum of the usehl signal 
from fixed reflective targets are suppressed. Thus, the radar becomes "blind" to 
fxed targets at specific ranges. As the first harmonics are suppressed, as a rule the 
station will become "blind" to the nearest targets, as those go into the blind range 
regions. In some cases this can be useful, as selection of moving targets in a back- 
ground of nearby clutter is obtained. 

If this is inadmissible, it is possible to imitate Doppler shift by applying a 
dual modulation to the transmission. The frequency of the additional modulation is 
selected to equal a cloned Doppler frequency. The deviation of additional modula- 
tion is selected such that at the greatest measured range the maximum of the first 
hannonic of the converted signal spectrum from th~s  modulation is reached. Thus, 
we conclude that there are adequate methods of receiver protection from PAM 
signals. In other words, the devil i.; not so temble as he is painted! 

4.3 STABILIZATION OF 'THE FREQUENCY DEVIATION 

As was noted earlier the majoritv of converted signal parameters whlch will be 
used for ranging depend on product A m .  During SRR operation a modulating 
voltage (or current) as well as the modulation characteristic of the transmitter can 
vary, and hence the deviation will not correspond to the nominal value. Obviously, 
this will lead to an additional meawring error in range. 
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If the allowable relative range error is level 5% to lo%, it is not necessary in 
most cases to undertake any special rneaswes for stabilizing the nominal value of 
deviation. Otherwise, it is necessary either to stabilize the deviation or to measure 
the true value of the deviation and apply a correction to the measwed result. 

It is possible to solve a problem of stabilizing the nominal value of frequency 
deviation by two methods. The first method is to apply a fiequency synthesizer 
(see Section 3.3). 

The second method is inclusion of a special channel, similar to a measuring 
channel, for calibration of the fiequency deviation (Figure 4.8). The signal delay is 
provided by a delay line. The operating principle of the calibration channel is as 
follows. The signal delay in the delay line is known, and therefore parameters of 
the signal at the output of the processing unit, applicable to a nominal value of a 
fiequency deviation, also are known. With a departure of these parameters from 
the nominal value, an error signal is obtained, which either adjusts the amplitude 
of the modulating voltage or the readings of the range finder. 

The processing unit of the converted signal in the calibration channel can be 
the same as or different from that in the measuring channel. All depends on the 
specifications of the SRR parameters. The quality of operation of this system is 
controlled by its operating principle and by the parameters of the processing unit 
of the converted signal in the calibration channel. 

For example, the first harmonic in the spectrum of the converted signal in the 
calibration channel (Figure 4.9) can be used for calibration. The signal delay in a 
delay line zd  is chosen such that the rated value of a deviation Am, corresponds to 
first null of the selected harmonic of the spectrum. For example, with modulation 
by an asymmetrical sawtooth it corresponds to the product A h d  = 2, while with 
sinusoidal modulation it is A h d  = 1.22. The first harmonic of the signal is passed 
to a phase detector. A voltage with the modulation fiequency, produced from the 
modulating voltage, is used as a reference signal for the phase detector. The phase 
shifter is included for compensation of the phase shift between voltages at the in- 
put to the phase detector. The voltage output of the phase detector is used in the 
modulator for adjusting the modulating voltage. Upon passing through the null, the 

System of converted 
signal processing 

Figure 4.8 Calibration of frequency deviation. 
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Delay line 

Figure 4.9 Block d~agram of the calibtiution channel 

phase of the harmonic varies by 180°, and the sign of the output voltage of the 
phase detector varies accordingly Thus, it is a typical feedback control system. 

A more complex system of using a phase-locked loop (PLL), in which the 
converted signal of the calibration channel will be used, enables not only maintain- 
ing a nominal value of frequency deviation, but also simultaneous compensation of 
the nonlinearity of the oscillator frequency modulating function. The applicable 
block diagram of the calibration channel is shown in Figure 4.10. Let us consider 
the operation of this unit. 

Let us assume that FM is carried out using an asymmetrical sawtooth function. 
In this case the converted signal represents samples of a sine wave with duration 
and recurrence interval Tm (see Section 3.3). This signal is applied to a phase de- 
tector, along with the reference signal with frequency R = ho,~~/T,, ,  where Am, is 
the nominal frequency deviation and .sd is the signal delay time in a delay line. The 
delay time can be always selected so that SZ = nRm. 

As we can see, the hequency of the reference signal is equal to that of the 
converted signal in the calibration channel with nominal deviation. The output 
voltage of the phase detector is added to the modulating voltage. If the frequency 
deviation does not correspond to the nominal value, the amplitude of modulating 
voltage is changed. Simultaneously there is distortion of the modulating voltage 
compensating the nonlinearity of the modulating function. 

This can be shown by a simple calculation. Let us refer the nonlinearity of the 
modulating characteristic of the oscillator to a modulating voltage (i.e., consider 
the modulation characteristic theoretically linear, and the modulating voltage 

Delay line Mixer Bandpass Controllable 
filter phase s h i i  

I 
I t 

I 
FM transmitter 

Figure 4.10 Calibration channel using PLL. 
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distorted). Then the modulating voltage will be written as: 

t 
Um = k, - + k , ~  (t) - u,, (t) 

Tm 

where y(t) is the fkction defining nonlinearity of the modulating voltage, Uo(t) is 
the output voltage of the phase detector, and k,, k2 are constants of proportionality. 
The phase of the converted signal is: 

and the voltage at the output of phase detector is 

where S is the slope of the linear part of the phase detector detection characteristic. 
Substituting (4.13) in (4.12), and solving it for Uo(t), we obtain 

Amdt uo (t) = S + k3A07d~(t) + 'PO 
(1 + S~,AOT, ) T, 1 + Sk,Aoz, 1 + Sk,Aoz, 

(4.14) 
1 

Substituting (4.14) in (4.12), we obtain finally the expression for phase of the 
converted signal at the mixer output to the calibration channel 

Sk4Aozd 
where A = 1 - - - 1 

l+Sk,Aoz, 1+Sk4Aoz 

As follows fiom (4.19, the difference between Am, and Am is decreased by 
the factor 1 + Sk4Amd, and the nonlinearity of modulation is decreased by the 
same factor. As is known, the increase of product Sk4Aoz is limited only by the 
stability of operation of the automatic deviation control system. That stability is 
ensured with known methods applied in PLL systems. 
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4.4 FREQUENCY PROCESSING OF THE CONVERTED SIGNAL 

The oldest and most common method of processing the converted signal exploits 
the relationship between its frequency and the target range. 

4.4.1 Range Finding by Counting the Number of Zero Points of the 
Converted Signal for a 'Modulation Period 

This method was the fust realized method of range measurement and has been 
used for many years. There are several reasons for its wide use: the simplicity and 
obvious application to SRR, its ahility to measure very small ranges, and the sim- 
plicity of signal processing. The latter, in the "tube epoch" of radio engineering, 
had decisive importance. That is why this method of signal processing has system- 
atically been used, primarily in low-altitude radio altimeters. In this application 
there are very strict requirements for reliability, mass, and overall dimensions. 

A large body of scientific resarch and articles is dedicated to the study of this 
method of processing. The theoretical analysis of the method is founded on such 
concepts as "difference frequencj*," "beat frequency," and "number of beats." In 
other words, the theory establishes the dependence of the instantaneous frequency 
of the converted signal on range Certainly the number of zero crossings of the 
converted signal directly depends on its instantaneous frequency. But this method 
is not in any way connected to measuring of instantaneous frequency and use of 
measured results for range finding. Therefore it can best be referred to as one of 
the varieties of phase processing. 

The important issue is that the difference frequency is not determined, but the 
number of cycles of converted signal phase, modulo n, per modulation period is 
determined. Confusion was introduced in this problem, apparently, because of the 
simple and visual explanation of the operation principle, as a meter for difference 
frequency. Let us consider h s  problem in more detail, for which we will refer to 
the SRR block diagram of the single-antenna SRR version with this type of pro- 
cessing, shown in Figure 4.1 1. 

As we can see, the converted signal from the mixer output passes to a limiting 
amplifier. The frequency responsr of this amplifier increases with frequency, pro- 
viding suppression of parasitic amplitude modulation signals and leveling of out- 
put amplitude with variation of target range. The limiting device changes the con- 
verted signal into a square wave, completely eliminating dependence between its 
output and input amplitudes. The square wave is then differentiated, and the result- 
ing short pulses are applied to a counter that produces a voltage proportional to the 
number of pulses in a modulation period. Thls voltage is proportional to measured 
range. 

One of the interesting features of this circuit for processing the converted sig- 
nal is its invariance to the applied modulation waveform. It is possible to apply 
any of the periodic modulations cliscussed above. The result will be same, in that 
only the number of impulses for a modulation period will vary: with sinusoidal 
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Figure 4.11 Block diagram of single-antenna SRR with pulse counter. 

modulation or modulation by an isosceles sawtooth it will be twice that obtained 
with modulation by a non-isosceles sawtooth. This is easily explained if we con- 
sider the phase of the converted signal. 

As was shown in Chapter 2, the phase of a converted signal is defined as 

Let us determine a phase shift of a converted signal for a period between two 
maxima of the modulating function, which by definition are equal to +0.5 and 
-0.5. 

If the maxima of the modulating function are situated at the beginning and end of 
its period, this will be the phase shift for a modulation period. This case in particu- 
lar corresponds to modulation using an asymmetrical sawtooth function. With si- 
nusoidal modulation or modulation by an isosceles sawtooth, this phase shift is 
reached in half the period. 

At the same time, as follows from (4.17), the phase shift does not depend 
on the modulation waveform. It is important only that the values of phase of the 
converted signal are fvted at the moments of the minimum and maximum of the 
modulating function. Now it is clear why this method of processing is invariant to 
the modulating waveform. Accordingly, with this method there are less rigid re- 
quirements for linearity of the transmitter modulation characteristic, a clear advan- 
tage for this method of processing. But, on the other hand, it is clear that rather 
coarse processing of the converted signal is applied. The phase shift of converted 
signal with a resolution of n. is, in fact, measured. Therefore the range measuring 
error is found fiom equating AoAz = n. to obtain 
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This formula appears in many artncles where difference frequency is counted, or 
number of beats, and so the deduction of this formula appears to be much more 
difficult. 

Even in the first experiments with these radars it was noted that with range 
variations of about hl4, the number of impulses varied by 1. This phenomenon is 
also easily explained. For tlus purpose we will refer to Figure 4.12, where the plot 
of the formula for the converted signal phase is shown. In cases a, b, and c the 
value of A o r  is identical, with 57c A o r  <6n. In case a the number of impulses is 
equal to 5. If the range is increased by =h/8, the number of pulses immediately 
becomes equal to 6, as in case b. With further increase in range the number of im- 
pulses is again equal to 5, as in case c. Ths  applies as long as A o z  does not be- 
come more than 6 ~ .  Then the number of pulses will oscillate between 6 and 7, and 
so on. Because of this there is a grimdarity in range measurement. 

Some time ago, when a frequency deviation of 30 to 50 MHz was considered 
large and the transmitted frequency was not greater than 300 to 500 MHz, this 
phenomenon necessarily resulted un large inaccuracies in range measurement, es- 
pecially at small ranges where the relative error reached several tens of percents. 

Different methods of "averagmg" for the detecting instrument were therefore 
proposed. For example, it was proposed to input into the direct signal channel a 
modulated phase shifter, which modulated the initial phase of the converted signal. 
Due to tlus, the observations of the detecting instrument were averaged. Currently 
the urgency of tlus problem has been considerably reduced. With deviations of 
200 to 300 MHz the measuring enor at ranges from 10m to 15m amounts to 2% to 
3%. Ths  is reasonable in the majority of applications. Also, in the cm wave band, 
averaging is obtained due to movement and heterogeneity of reflective surface. 

4.4.2 Measuring of the Instantaneous Frequency 

In some SRR applications,, range measurement to immobile (slow-moving) targets 
is required (for example, in liquid-level-measuring radar, meters for ranging to 
unapproachable fixed targets, and meters for small movements of various targets). 
The basic requirement presented in the characteristics of such SRRs is relative 
simplicity and minimum measuring error. 

In tlus case it is convenient to apply the method of range determination by 
measuring the instantaneous frequency or period of the converted signal. In the 

Figure 4.12 Typical converted signal phase versus time plots 
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final analysis the matter is again reduced to determination of the magnitude of the 
converted signal phase shift Ao.s for a modulation period. T h s  case differs from 
the previous method of processing only in that the time interval between nulls of 
the converted signal (i.e., the duration of its half-period) is measured instead of the 
number of zero crossings. 

As there is no necessity for determination of speed or adjusting of measure- 
ment in connection with the Doppler effect, the most convenient modulation to 
apply is the asymmetrical sawtooth function. Well known methods of measurement 
technology are applied for measuring of time interval, and therefore here it is not 
necessary to consider this problem. It is important only to note that existing meth- 
ods allow us to measure time intervals with errors not more than hundredths of one 
percent. Accordingly, the phase shift A o z  is measured with the same inaccuracy. 
However, this is correct only in the case when the FM is ideally linear. 

With departure of modulation from linearity the duration of adjacent periods 
of the converted signal is unequal. Therefore the mean value of the converted sig- 
nal period is determined for range measurement. The deviation of the mean value 
of the period from its true value, corresponding to the theoretical modulation, is 
controlled by two factors: the nonlinearity factor of the modulating function and its 
shape (see Section 3.4). 

The nonlinear component of the modulating function is often nearly symmet- 
rical with respect to the middle of the modulation period. We can then use (3.36) 
and (3.37) for calculation. From (3.37) it is at once visible that the mean frequency 
rate of the converted signal is equal to f i t  = A o z l T ,  (i.e., is equal to its nominal 

value). This is easily explained by the fact that for the first half of the modulation 
period the instantaneous frequency is slightly less, whle for the second it is greater 
by exactly the same value. 

We utilize the same approximation for a maximum asymmetry of modulating 
function, 

- A m  
and R,(t,z)=-(l+v) (4.19) 

Tm 

The applying of another approximation (for example, a parabola) gives the same 
result. 

Thus we find that inaccuracy of phase shift determination in this case is no 
greater than the nonlinearity factor of the modulation function. A combination of a 
calibration channel and PLL to control the deviation permits this method of con- 
verted signal processing to measure the range with relative error not more than 
tenths of one percent. Certainly, no granularity in readout of range is present. 
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4.4.3 Fixing the Instantaneous Frequency of the Converted Signal 

The circuit of a calibration channel with PLL control of transmitter frequency de- 
viation was reviewed above. Precisely the same circuit can be utilized as well for 
implementing a measurement channel. The applicable block diagram of single- 
antenna SRR version is shown in Figure 4.13. 

The parameter that is maintained constant is the instantaneous frequency of 
the converted signal. The modulation is an asymmetrical sawtooth function. A 
phase detector is used as the discriminator. The applicable harmonics of the modu- 
lating voltage are used to generate a reference signal for the phase detector. The 
voltage output of the phase detector is applied to the modulator to vary the modu- 
lating voltage. 

The converted signal is applied to a bandpass amplifier that uses automatic 
gain control (AGC). The bandpass of this amplifier should be wider by a factor of 
two or three than the major spectral lobe of the converted signal (i.e., about lOF,). 
The normalization of the converted signal amplitude is essential here to ensure 
stability of the automatic frequrncy deviation control system. If necessary, the 
signal can be limited after amplification. The modulating voltage appears as the 
output signal of the processing unit, whlch is applied to a range indicator. The 
amplitude of the modulating voltage is inversely proportional to target range. 

Frequency locking must occur for normal operation of the automatic control. 
However, it cannot take place if the instantaneous frequency of the converted sig- 
nal is not equal to a fixed frequency at radar turn-on. To ensure locktng, a special 
search unit is provided. When there is no signal at the phase detector output, the 
frequency deviation is slowly swept by this unit from minimum value up to maxi- 
mum (or vice versa). As soon as locking occurs, the unit is turned off. If for any 
reason the automatic system breaks lock, the search unit is again actuated. The 
search time depends on the response rate of the automatic control system and usu- 
ally exceeds a period of modulatron T, by one or two orders of magnitude. As the 
discriminator, it is possible to apply the usual frequency detector, in whlch case 
there is no need for a reference sibmal. 

Transce~ver 
antenna 

FM transmitter 

Figure 4.13 Block diagram of an FM SKR with fixed instantaneous converted signal frequency. 
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The stabilized value of instantaneous frequency of the converted signal de- 
pends on several factors: on the ranges to be measured, the possible tuning fre- 
quency range of the transmitter, the parasitic amplitude modulation signal level at 
the mixer output, and the magnitude of Doppler frequency. 

The latter is explained by dependence of instantaneous frequency not only 
upon target range, but also upon its velocity. Therefore, the range measurement 
system is subject to an error depending on speed. This is certainly a deficiency of 
this processing method. For reduction of this error it is necessary to increase as 
much as possible the stabilized instantaneous frequency of the converted signal. 

To eliminate influence of the Doppler effect, it is possible to apply sweep- 
frequency modulation by a symmetrical sawtooth function. As in this case the in- 
stantaneous fiequency in adjacent half-cycles differs by 2 a D  (see 3.29), and the 
signal at the phase detector output has the shape of a symmetrical sawtooth. For 
normal operation of the automatic control system it is necessary to derive from this 
voltage its average value using a simple lowpass filter. The variable component 
can be used for determination of the relative velocity of the target. The inaccuracy 
of range finding in this case is caused primarily by instability of the modulation 
characteristic of the transmitter. 

4.4.4 Use of the Frequency Deviation of the Converted Signal 

Use of the frequency deviation of the converted signal is one of the most effective 
methods for simultaneous measurement of range and relative velocity. This 
method was designed originally as a method of eliminating a granularity in range 
finding [2]. As follows from (3.3), (3.4), and (3.9, the frequency deviation of the 
converted signal varies linearly and continuously with delay time of the target echo 
over range delays from zero up to T = 0.1 T,,,. 

It is most convenient in this case to use the SRR version with frequency shift 
of the direct signal (Figure 2.2) and sinusoidal modulation of the transmission. The 
application of other SRR types, reviewed in Chapter 2, with use of dual sinusoidal 
modulation is sometimes possible. 

The simplified SRR block diagram is shown in Figure 4.14. It differs from the 
circuit in Figure 2.2 only in that the contents of the unit "system of converted sig- 
nal processing" is rendered more concretely. As was already noted, the converted 
signal in this case represents an FM signal with central frequency do f OD and 
sinusoidal modulation. Therefore the preferred circuit for FM signal processing (a 
limiting device and frequency detector) is connected to the output of the IF ampli- 
fier. The transition frequency of the discriminator curve is 6 0 .  

It is evident that the voltage at the output of the discriminator represents a sine 
wave, the amplitude of which is proportional to range. The constant component of 
the discriminator output is proportional to the offset of the converted signal center 
frequency by the Doppler shift. 

However, this circuit is only an illustration of the SRR operating principle 
with this version of converted signal processing. To realize such a simple processing 
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Figure 4.14 Simplified block diagram FM SRR with frequency detector. 

circuit in practice is unrealistic for the following reasons. As was already men- 
tioned, the frequency shift of the forward signal and accordingly the center fre- 
quency of the converted signal, is itbout 100 MHz. The frequency deviation of the 
converted signal can be greater than the modulation frequency by two or three 
orders of magnitude. Even if the modulation frequency were rather high, for ex- 
ample 1 kHz, the deviation does not exceed several hundreds of kilohertz. At a 
transmitted wave length of-8 mm and relative velocity up to 100 lan/h, the Dop- 
pler frequency does not exceed -20 kHz. 

At frequencies of 100 MHz or more it is very difficult to make a discriminator 
with a bandwidth of some hundreds of kilohertz. The characteristic of the dis- 
criminator with such large bandwidth has, accordingly, reduced slope. It is, in gen- 
eral, impossible to ensure frequency stability in the discriminator characteristic 
and the shft frequency to the accuracy of hundreds or even of tens of hertz, as is 
necessary for precise measurement of Doppler frequency. 

For this reason it is necessary to apply multiple conversions of the frequency 
of the converted signal to a value that does not exceed several hundreds of kilo- 
hertz. The applicable block diagram is shown in Figure 4.15. Here the FM trans- 
mitter (1) is modulated sinusoidally by the modulator (2). Part of the transmitter 
power (the direct signal) arrives at mixer No. 1 (3), to which an unmodulated sig- 
nal with frequency 6w from the supplementary oscillator (4) is also applied. At the 
output of mixer No. 1 there is a single-sideband filter (9), which selects the signal 
with fiequency od = o, - 6 0  + (AwcosC2,t)R. T h s  signal is applied to mixer No. 
2 as a direct signal. The converted signal with frequency 

is input to the IF bandpass amplifit-r (13). 
For realization of multiple down-conversion of the signal frequency, two sig- 

nals, one from oscillator (4) and another from oscillator (6) with frequency ol are 
applied to Mixer No. 3 (5), such that ol < 6o. As a result, the signal at the output 
of filter (10) is at the frequency 6iu - ol. This signal arrives at mixer No. 4 (14). 
The subsequent filter and IF amplifier select a signal with frequency 
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Figure 4.15 Complete block diagram FM SRR with frequency detector. 
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The further transformations of the signal are clear from the block diagram. In 
this case two stages of downconversion are used as an example, but more stages 
can be used. It is important that the frequency of the last supplementary oscillator 
should be made low and stable enough. The transition frequency of the discrimina- 
tor characteristic is equal to the frequency of the last supplementary oscillator (8). 
This also achieves high stability of the converted signal center frequency and the 
transition fiequency of the discriminator characteristic. The constant component of 
output voltage of the discriminator is proportional to relative target velocity, and 
its sign indicates the direction of movement. The variable component, selected by 
a narrowband filter (20), is proportional to target range. 

Other circuits for deriving the direct signal fiequency shift are also possible, 
for example that shown in Figure 4.16. Here a supplemental FM generator is used 
for deriving the direct signal with shifted fiequency. This oscillator is connected to 
the FM transmitter by a phase-lock circuit. The signal frequency of the reference 

Mixer Ns5 
(7) 

I I I 
Single-sideband Filter Filter 

filter 
(9) 

(10) (14) 

I 1 
IF IF 

Mixer NPil - amplifier Mixer k 4  amplifier Mixel N d  
(12) 
- 

(13) (14) 
- 

(15) ($6) 

I 
Narrmband Frequency 

filter detector Limiter 

Generator 
,, 
(6) 

Generator 

(4) 

Mixer Nnl 
(3) 

, - - Mixer NQ3 
(5) 



Integrated Methods of Converted Signal Processing 71 

Modulator 

To VHF Supplemental Filter Mixer 
mixer generalor 6w detector - 

Figure 4.16 Block diagram of the frequency shifter. 

Reference 
generator 

generator in the PLL system is equal to 6 0 .  This frequency can be made reasona- 
bly small (i.e., equal to the frequcncy of oscillator (8) of the previous circuit). Ac- 
cordingly, the frequency stability of ths  oscillator can also be made hgh  enough. 
Thus, the SRR receiver is simplified at the cost of some complicating of the direct 
signal channel. 

Here it is convenient, if necessary, to apply cancellation of the intermediate 
frequency signal originating from spillover of the radiated signal into the receiving 
antenna. For this purpose a signal from the reference oscillator is summed with the 
parasitic signal (Figure 4.17). Art attenuator and phase shifter are used to ensure 
equal and antiphase summing of these signals. 

t 
I 1 

4.4.5 Applying Dual SinusoitBal Modulation 

It was noted in Chapter 2 that one possible method of deriving a converted signal 
with nonzero intermediate frequcncy when using homodyne reception is to apply 
dual modulation. In this case it is most convenient to apply dual sinusoidal modu- 
lation. Parameters of the basic modulation (which we will call for brevity "first") 
are selected as in the previous case. 

The frequency of supp1emc:ntary ("second") modulation is selected much 
higher than the frequency of the first, but no more than the frequency of the sup- 
plementary oscillator (8) of the previous circuits. The frequency deviation of the 
second modulation is usually selected smaller (i.e., such that even at maximum 
range there will be no more than one or two components in the spectrum of the 

1 

IF amplifier 
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Figure 4.18 Graph of a cylindrical Bessel function of the first type and order 1. 

second converted signal). It is also necessary that within the limits of measured 
ranges the component of the spectrum used have no nulls. 

Referring to the profiles of cylindrical functions (Bessel functions) of the first 
kind (Figure 4.18), it is evident that this requires that the first component corre- 
spond to a Bessel hc t ion  argument within a maximum range X=: 1.5 to 1.7. Sup- 
posing X = 1.57, we obtain a simple relationship between the second deviation and 
maximal delay time 

Ah = 1/22,, (4.20) 

If the delay time is measured in microseconds, we obtain a deviation in megahertz. 
The basic difficulty in applying a dual modulation consists in separation of the 

necessary part of the entire spectrum of the converted signal. Figure 4.19 shows 
the spectrum of the converted signal. 

We can see that, except for a low frequency portion of the spectrum depend- 
ent upon the frequency of the first modulation, there are lines clustered around of 
frequencies Rd and 2Slm2. Let us consider in more detail the composition of these 
spectrum components. Rewriting (2.29) in more compact form: 

Figure 4.19 Spectrum of converted signal with dual modulation. 
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then (2.30) can be rewritten in the form 

u,=U,{cos~(t,r)cosbw,~;,(t,r)-sin~(t,~)sin~o,~,(t,r)) (4.22) 

As we can see, the multiplicands cosy(t,r) and sinyr(t,r) are generated only by the 
first modulation and the Doppler effect. Accordingly, multiplicands cosAm2Ft2(t,t) 
and sinAo2F12(t,r) are generated only by the second modulation and can be ex- 
pressed by a Fourier series. 

Then, supposing T,, >> z and using (3.2), (3.6), (3.7), we obtain 

After expansion only the first three components of spectrum are necessary, as 
the amplitudes of remaining components are very small and it is possible to ne- 
glect them. Finally, we obtain 

J,,(X2)~~~~(t,~)-2J,(X,)cosR,,(t -TI  2)sinyr(t,r) 
U ,  = u, i (4.25) 

-25, ( A ,  )cos 2SZ,, (t - r 12) cos ~ ( t ,  t )  

The useful component of the spectrum is the second, which is located in the region 
of frequency Rm2. It is easily sele~cted with a bandpass filter, as the spectrum gen- 
erated by the first modulation is significantly narrower than that of the second 
modulation frequency. Thus, on the output of the bandpass filter with unity gain 
we have 

sin[R,,(t - r 1 2) + ~ ( t ,  r)] 
= u, J, (X, ) 

-~in[Q,,(t-r12)-~(t,r)] 

As we can see, the suppressed-carrier AM signal is present at the output of the 
filter, and there is no FM on this signal. This signal consists of two signals, the 
spectra of which are overlapped, and it is impossible to separate them with filters. 

It is possible to apply, for suppression of one signal, the well-known phase- 
compensation method of deriving an SSB signal. For t h s  it is necessary to obtain a 
second converted signal with 90' phase shift, namely the signal 
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u, = U, sin [v(t , r )  + Am,<, (t, r)] 

sin ~ ( t ,  r)cos Ao,e, (t, r )  i (4.27) 

+ cos (t, r )  sin Aa2C2 (f, r )  

For this purpose there must be a second SHF mixer, to which the direct signal with 
a phase shift of 90" is applied. Further, fiom the spectrum of the second converted 
signal we obtain the applicable signal 

U,,, = U, 2 Jl (X,) cos a,, (t - T I  2) cos y(t,r) 

One of the signals UOu, is shifted in phase by 90°, then is added to the other signal 
Urn. The result is a single sideband FM signal with a central frequency Qm2. The 
appropriate block diagram is shown in Figure 4.20. 

As in the version with shift of the forward signal central frequency, this SRR 
receiver is rather complicated. As two phase shlfiers for the direct signals are re- 
quired, the application of the single-antenna version is precluded. Phase-shifting of 
signals by 90" does not introduce significant engineering difficulties, as these sig- 
nals are narrowband. At the same time, the receiver requires carefhl alignment. 

These methods of processing the converted signal certainly have many posi- 
tive qualities. These include linearity and continuity of range readout with simulta- 
neous speed measurement, the absence of Doppler influence on range measurement, 

Figure 4.20 Block diagram of single-sideband processor. 

h 

Bandpass 
amplifier 

Bandpass 
filter - Mixer 

NQI 
i 

Receiving 
antenna 

A 

-' 

From FM 
Fixed transmitter 

phase shifler 4 : 
90'' 

+ 
NQ2 

+ 
Limiter 

4 
Frequency 
detector 

phase shifter filter 
90° 

- Mixer - Fixed 



Integrated Method v of Converted Signal Processing 75 

and the possibility of measuring 1)f very small ranges ( lm or less), with rather 
small frequency deviation. Certainly, a large disadvantage is the necessity of using 
two antennas, and of ensuring hlgh decoupling between them. Also, the complica- 
tion of the circuit may be excess~ve relative to its performance. Therefore these 
methods have not received widespread use. 

4.4.6 Single-Antenna Version with Zero Intermediate Frequency 

Consider a converted signal with sunusoidal modulation applied to a lowpass filter 
with linearly increasing frequency response (we will call this a "shaping filter") 
(Figure 4.21). Let us assume that the frequency of the converted signal varies 
slowly and the quasi-stationary representation for passing of the FM signal through 
the reshaping filter is possible (the condition of applicability of this representation 
is shown below). Then an AM-FM signal will appear at the output of th~s  filter, the 
envelope of which is proportional to the instantaneous frequency of the converted 
signal. It is sufficient to detect h s  signal with an amplitude detector, and from the 
resulting voltage to select with a filter a voltage with frequency 2Fm. The ampli- 
tude of thls voltage is proportiondl to the frequency deviation of the converted 
signal (i.e., to target range) and does not depend on the Doppler effect. The fre- 
quency deviation in adjacent half-cycles differs by 2RD (see Figure 3. I), and the 
average voltage is selected by filtering. This apparently very simple solution can- 
not be realized for the following reason: clearly, the output voltage of this circuit 
depends not only on range, but aka on the amplitude of the converted signal. To 
apply amplitude limitation to the converted signal in this case is impossible be- 
cause this signal is broadband. Hmce it is impossible to filter higher harmonics 
originating in the limiter. 

Therefore in this case it is nec:essary to apply an amplifier with AGC instead 
of the limiting device for normalization of converted signal amplitude. The fie- 
quency response of thls amplifier should be constant in the entire frequency range 
of the converted signal spectrum, except for the fust several components. It is nec- 
essary to eliminate these first components because the frequency of the envelope 

+- 
Figure 4.21 Conversion of frequency to vcltage 
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Figure 4.22 Processing of single-antenna signal using AGC. 

of the received AM signal is equal to 2Fm and is commensurable with a low fre- 
quency part of the instantaneous frequency range of the converted signal. There- 
fore, normal detection of targets in this band of frequencies is impossible. After 
that, the normalized signal arrives on the shaping filter, and so forth (Figure 4.22). 

Let us consider the condition for applicability of the quasi-stationary represen- 
tation for passing the FM signal. In theoretical publications on this problem, it is 
shown that this representation is applicable if the following condition is satisfied: 

where B is the filter passband, A o  is the frequency deviation of affecting FM sig- 
nal, and n is the modulation frequency. The most difficult condition for applica- 
bility takes place when the frequency deviation of the converted signal is commen- 
surable with the bandpass of the reshaping filter. Talung into consideration that in 
t h s  case R = 2Rm, we obtain a simple relationship linking the modulation fre- 
quency to the frequency deviation 

Technically this condition is easily met. For example, with a maximum range 
R, = lOOAC2, it corresponds to the product A ~ T  = 30 (i.e., to a deviation of 30 MHz 
at a range of 150m, or 300 MHz at 15m). 

The range measuring error in this version depends basically on the quality of 
normalization of the converted signal and the quality of the frequency response of 
the reshaping filter. 

4.4.7 Fixing the Frequency Deviation of the Converted Signal 

The method of fixing one of the parameters of the converted signal can be realized 
by fming the frequency deviation of this signal. The basic engineering problem 
that must then be solved is the design of the applicable discriminator. As we will 
show, it is rather simple to make such a discriminator. To show the possibility of 
deriving discrimination performance, we will consider the character of variation of 
amplitude of the first spectrum harmonic of some periodic function y(t). For t h s  
purpose we refer to Figure 4.23. 

As we can see, the function y = f  (x) = 1 in segment xl I x I xz and monotoni- 
cally decreases to 0 for x > x2. Let us assume also that b c t i o n  cp(t) is a periodic 
even fimction monotonically descending from 1 to 0 as t varies from 0 to Tl2. 
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Figure 4.23 Plot for calculation of the discriminator. 

Supposing x = acp(t), we form a function ~ ( t )  = f [acp(t)], where a is a factor de- 
pendent neither on x nor on t .  

Let us consider the dependence of function y(t) on the factor a. Note that the 
function y(t), as well as cp(t), is periodic and even. We see that x ,  I a _< x2 for 
y(t) = 1. With increase in a beyond x2 at times t = nT (n = 0, 1,2, . . .), the fimction 
y(t) has a minimum, which decreases with increase of a .  Thus the region for which 
y(t) = maximum is displaced to times t = (2n + 1)T/2. 

Having clarified the regularity of variation of fimction y(t) with factor a, we 
consider dependence of the first spectral harmonic of y(t) on that same factor. By 
virtue of the even nature of y(t), the first harmonic of its spectrum is found as 

With variation in a within limits From x, to xz, we see that y,  - const. With fiuther 
increase of a,  the amplitude of the first harmonic drops because of a decrease of 
the first integral, and at reaching equality 

it goes to zero. The increase in factor a results in a hrther decrease of the first 
integral in (4.32), because of which the amplitude of the first harmonic becomes 
negative (i.e., the phase of the hsumonic is reversed at 180°). 
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We will obtain particular variations of the first harmonic amplitude for par- 
ticular functions f (x) and cp(t). Assuming thatf(x) = 1 for xl I x l x2, andf(x) = 0 
for x I XI, x 2 x2, we find 

7T T T 
q(t) =cos-t for -- l t l-. 

T 2 2 

In this case amplitude of the spectrum first harmonic is described by the following 
expressions: 

y, = 0 for a I x, (4.34) 

A plot of the variation of the first harmonic amplitude with the ratio ahz, provided 
that xl = 0.5x2, is shown in Figure 4.24. As we can see, it is the typical discrimina- 
tor characteristic. 

It is possible to realize particular proportions, physically, having realized 
functions f(x) and aq(t). In a context of this description it is seen that the function 
acp(t) describes the instantaneous frequency of a converted signal with sinusoidal 
modulation, and the factor a is proportional to the frequency deviation. Then the 
function f(x) can be realized using a serial connection of a bandpass filter with the 

Figure 4.24 Magnitude of first harmonic as a Figure 4.25 Discriminator characteristic, 
fimction of alxz. 
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applicable fkequency response and an amplitude detector (we will call this filter, as 
well as that in the previous paragraph, a shaping filter). To separate the first har- 
monic of the output signal spectrum of an amplitude detector it is passed through a 
narrowband filter with a resonant fr-equency 20,. 

Supposing that the frequency I'esponse of the shaping filter is ideally rectangu- 
lar in the frequency range fiom nl no R2, (4.35) and (4.36) now take the form 

where AQ, is the frequency deviatmn of the converted signal defined in (3.5). In 
Figure 4.25 we show the profile of the discriminator characteristic described by 
(4.37) and (4.38) for !2z/hZl = 2. The coordinates of characteristic points of this 
characteristic are given by the follcwing formulas: 

2 AR R 
Point of maximum positive y, = - -- I =LA 
response ( 1): 7t ' R 2  n2 

Inflection point (2): 

Null point of the characteris- 
tic (3): 

y1 z -  --- 
1 

Point of maximum negative R 2 & ( a 2 / q + n , l n , )  I 
response (4): 

The simplified formulas correspond to an idealized discriminator characteristic. 
The formula for the significant characteristic is connected first of all with the 

problem of passing of FM oscilla~ions through linear quadripoles. In general t h s  
problem consists of determination of the law of signal amplitude and frequency 
variations at the output of a quaduipole, given an FM signal as its input. A full 
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solution of this problem has not yet been obtained, and there are only separate 
proprietary results. 

In this case we must solve a simpler problem. Ignore here the frequency 
shift of the output signal, as it will be applied to an amplitude detector. With re- 
spect to amplitude variation only one part, the gap in amplitude, is of interest, be- 
cause of which there is a reversal of phase of the first harmonic. But the solution 
of this problem becomes complicated by the fact that the instantaneous frequency 
of the input signal may necessarily exceed the limits of band pass of the quadripole 
(shaping filter). Therefore the quasi-stationary method is inapplicable. This leaves 
only the method of stationary phase [3]. Ths  method does not give a precise solu- 
tion, but does give a good approximation. 

As the frequency deviation of the converted signal is generated at frequency 
Q2, the problem is reduced to calculation of the modulation frequency at which the 
zero point of the discriminator characteristic is shifted to the right of its allowable 
magnitude, compared with the ideal characteristic. In other words, how rapidly can 
the instantaneous Erequency of the converted signal be changed? 

Omitting the rather cumbersome calculations, we will produce a final result, 
the formula for calculation of modulation frequency: 

where Dl 2 1.2 is a coefficient describing the null shift of the real discriminator 
characteristic as contrasted with the theoretical one. For example, for PI = 1.2, 
R2/QI = 2, R, I 02/25 it corresponds to a product Aft = 25/n = 8. Thus, at 15m 
range a deviation of 80 MHz is required. 

It is also possible to evaluate precisely the influence of a trapezoidal filter fre- 
quency response on the shift of the zero point of the discriminator characteristic. 
As shown by calculations, the high-frequency lobe of this characteristic exercises 
primary influence over the shft of the null. The applicable profile for a similar 
coefficient P2 is shown in Figure 4.26. 

The shift of the null of the discriminator characteristic is mfluenced, of 

Figure 4.26 Plot of the coefficient P2. 
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Figure 4.27 SRR using fixed frequency deviation of converted signal 

course, by Doppler effect. But this influence can be reduced to an acceptable mini- 
mum by increasing the modulation frequency, and, accordingly the upper 
boundary fiequency of the frequency response of the filter. The block diagram of 
an SRR with h s  discriminator is shown in Figure 4.27. It in many respects is simi- 
lar to the circuit that fmes the instantaneous fiequency (Figure 4.13) and does not 
require further special explanation The phase shifter in the reference signal circuit 
is included for cancellation of the phase shift generated in passing the signal 
through the processing unit. The search unit is omitted here, as it is always possi- 
ble to establish an initial value of frequency deviation such that the instantaneous 
frequency of the converted signal will be in the filter passband, following whch 
the automatic control system will lock. 

4.5 PHASE PROCESSING OF THE CONVERTED SIGNAL 

Strange as it may seem, phase processing of the converted signal has not found 
broad application, though the elements of the theory were obtained more than a 
half-century ago. Apparently, this is explained by the fact that 30 to 40 years ago 
technical factors did not allow realization of this type of processing. In particular, 
it was impossible to construct a suficiently compact arithmetic-logic unit to per- 
form the calculations necessary for phase processing. There was also probably no 
practical need for its realization. The key feature of phase processing is that its 
application allows us to measure short ranges, from fractions of a meter up to hun- 
dreds of meters, with an error no more than one-tenth of one percent. Naturally, 
such precise measurement can be realized only with definite technical characteris- 
tics both in the SRR and the target 

In particular, if the frequency deviation of the oscillator is varied during op- 
eration even as much as one percent, a range error less than one percent cannot be 
provided. Also, for example, a range of 10m can be measured with error of some 
millimeters. But the reflecting surfsce is usually rough, with amplitude of surface 
irregularities of some centimeters. Obviously, applying phase processing in this 
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case makes little sense. Thus, phase processing is most useful for application in 
high-precision fluid-level meters in closed tanks, and measuring displacement of 
various targets and constructions. 

The principle of phase processing and the resulting small measuring error are 
based on the following calculations. As already shown, the phase shift of the con- 
verted signal in the interval between two maxima of the modulating function, 
which are equal to +0.5 and -0.5, is given by 

A(P, (t, T) = coc~ + Aat0,5 - qo - 0 , ~  + Aw0, 5 + qo = AWT. (4.44) 

If the maxima of the modulating function are at the beginning and end of a period, 
this will be the phase shift for a modulation period. T h s  case, in particular, corre- 
sponds to modulation with an asymmetrical sawtooth function. At the same time, 
as follows from (4.44), the phase shft does not depend on the modulation wave- 
form. It is important only that the values of the converted signal phase are fvred at 
the moments of the minimum and maximum of the modulating function. From 
(4.44), it follows that by measuring a phase shift Acp,(t,t) and knowing a frequency 
deviation, it is easy to determine echo delay (i.e., target range). 

Let us assume that Aq,(t,~) =1,000° and that the inaccuracy of phase shift 
measurement is equal to lo.  Then the relative inaccuracy of range measurement is 
equal to The measuring of a phase shift with such a small error does not in- 
troduce any engineering difficulties in thls case, as it is made with a modulation 
frequency that one can set low enough (for example, 100 to 1,000 Hz). 

For example, if the range is 15m and frequency deviation is 100 MHz, then 
Aql(t,t) = 360° x 10 = 3,600°, and if the inaccuracy of the phase shift measure- 
ment is lo, the range error is 4 . 2  mm. Let us note that with a deviation of 100 
MHz, the range error £?om counting number of nulls or maxima of the converted 
signal for a modulation period is 180 times greater, or 75 cm. Thus, it is possible 
to arrive at the conclusion that phase processing is very effective as well as simple. 
But many factors prevent realization of such simple processing. First, the initial 
phase of the converted signal at the start of the modulation period, as well as phase 
values in the final parts of the period, are obscure. Obviously, without determina- 
tion of these phases it is impossible to determine the phase shift A m .  

Second, measurement of the phase shift Aq,(t,t) is complicated by the fact 
that the phase varies nonlinearly in time because of nonlinearity of the modulation 
characteristic of the FM oscillator and nonlinearity of the modulating voltage. 
Third, to achieve measurement of fractions of one percent, it is necessary to main- 
tain the magnitude of the frequency deviation with the same fidelity. 

Let us consider possible ways of overcoming these difficulties in realization 
of phase processing. At first we will consider how to determine the phase shift 
Aq,(t,~) = Am. For determination of this phase shift it is most convenient to use 
linear frequency modulation (for example, an asymmetrical sawtooth function). If 
the frequency of the FM oscillator were modulated ideally under the linear law, the 
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measuring of a phase shift would tne unnecessary: it would be sufficient to measure 
a period of the converted signal T, then 

Aq" ( t ,  z) = 2xTm 1 T (4.45) 

Such an algorithm of calculation is possible when using a frequency synthesizer as 
the FM oscillator, where it is possible to derive an ideally linear modulation char- 
acteristic (Section 3.4). 

For more usual oscillators the modulation characteristic is nonlinear, and 
therefore the converted signal represents a sample of a sine wave with a variable 
period. The variation of the period is no more than several percent of its average 
value, but the inaccuracy of calculating the phase shift in (4.45) will also cause an 
error of some percent. If such inaccuracy of measurement in the given particular 
case is allowable, the problem is resolved. 

If it is not allowable, more complex methods for determination of Acp,(t,r) 
rather than those under (4.45) are required. 

Let us consider these calc~~lations, for which we will refer to Figure 4.28, 
where a converted signal with variable frequency is shown. 

In essence, the problem is reduced to determination of the phase shlft of the 
converted signal in time periods t , ,  . . . t ,  and t4 . . . T,,,. In the time interval t l  . . . t4, 
the integer number of half-cycles of the converted signal is retained, and therefore 
the phase shift in h s  time period is obtained by multiplying the number of half- 
cycles by 180". 

For determination of phase shift in time intervals to . . . t l  and t4 . . . T,, it is 
convenient to compare the duration of these intervals with adjacent half-cycles, as 
it is possible to consider a phase change in two adjacent half-cycles linear enough. 
Then 

and 

after which 

Figure 4.28 Plot of converted signal with variable frequency. 
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where k is the integer number of half-cycles of the converted signal in a period of 
modulation. 

For estimation of utility of this algorithm we will estimate the measurement 
error of a phase shift with real nonlinearity of the FM oscillator modulation char- 
acteristic. It is most simple and convenient to approximate a working section of 
modulation characteristic by the sum of a linear function and quadratic (parabolic) 
function [Figure 4.29(a)]. The shape of the modulation characteristic using this 
approximation corresponds to the most frequently encountered real modulation 
characteristics. 

In this case, the phase of the converted signal with linear-frequency modula- 
tion also varies in time under the same law [Figure 4.29(b)] and can be expressed 
as 

cp, (t, T) = d o ~ a  - 446q(a2 -a) + cpo (4.49) 

where 6cp = gAoz is the factor that determines the magnitude of nonlinearity of the 
modulation characteristic, a = (t - to)lTm, and cpo is the initial phase. 

The greatest error in determination of phase shift is when for a period of 
modulation an almost integer number of half-cycles of the converted signal will be 
received (i.e., the phase shift in time intervals to . . . tl and t4 . . . T, will differ from 
180" by fractions of one degree). Therefore for calculation it is expedient to put 
this shift equal to 180' (or n), and cpo=O. 

For calculation of the phase shft in the interval to . . . tl it is necessary to de- 
termine intervals of time to . . . tl and tl . . . t2, and then determine the phase shift 
from (4.48) [Figure 4.29(c)]. The difference of the computed result from 180" will 
determine the error. 

Equating (4.49) to n, assuming A ~ T  = h, and solving the resulting equation 
with for (tl - to)/Tm, we find 

I Urn 

a\ b) 

Figure 4.29 Illustration of the phase calculation. 
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(t ,  -t,,)/Tm = z ( l - 6 )  (4.50) 

where x = 16qi(l + 4q)2k and z = ( I  + 4q)/8q. Similarly, equating (4.49) to 2n, we 
find 

(I, - to )  1 Tm = z(1- ,/- (4.5 1) 

Substituting (4.50) and (4.5 1) in (4.46), we obtain 

Carrying out similar calculus for A V , - ~  , we obtain 

Subtracting n from (4.52) and (4.53) and adding the results, we obtain the er- 
ror of calculating the phase shift 6(A(p,). The results of these calculations are 
shown in Figure 4.30. 

As we can see, even for small numbers of half-cycles (15 . . . 20) the inaccu- 
racy of the phase shift measurement does not exceed fractions of one percent. 
Thus, the method of calculation described allows us to determine a phase shift 
with an obscure initial phase and no~nlinear FM oscillator modulation characteristic. 

Figure 4.30 Phase error versus number of half-cycles in modulation period. 
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Delay line Mier - 

Figure 4.31 Range measurement using calibration channel. 

Now we proceed to a problem of stabilizing the fiequency deviation of the os- 
cillator. As already stated, one method is use of a frequency synthesizer or calibra- 
tion channel. The second method is for the frequency deviation of the oscillator to 
remain unstabilized relative to its nominal value. Through a calibration channel, 
the true value of the deviation is determined and the applicable correction in 
calculation of target range is entered. In many cases this method can appear as 
simpler and sufficiently effective. 

As an example we will consider one possible realization of this method. This 
was applied in combination with the previously mentioned phase processing of the 
converted signal in development of a high-precision SRR for liquid level mea- 
surement in a closed tank [4]. The block diagram of the radio-frequency unit that 
includes the calibration channel is shown in Figure 4.3 1. 

As we can see, the signal from the FM oscillator branches, one part of it arriv- 
ing at the measuring channel circulator and one part at the calibration channel cir- 
culator. The transceiving antenna is connected to the measuring channel circulator. 
The delay line, short-circuited at the end, is connected to the calibration channel 
circulator. The modulation is an asymmetrical sawtooth voltage. 

For an explanation of the algorithm of calibrating and measuring channel in- 
teraction we refer to Figure 4.32, which shows the waveforms of the radiated sig- 
nal frequency change (a) and the limited converted signals of calibrating (b) and 
measurement (c) channels. 

At time tb, when the instantaneous value of the calibration channel converted 
signal passes through zero in a positive direction, the readout of phase shift for 
both calibrating and measurement converted signals starts. The process of measur- 
ing phase shift stops at t, when a definite number of periods of the calibrating 
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Figure 4.32 Plots of frequency of transmlwion and limited converted signals. 

converted signal, constant for the given instrument, (three periods in Figure 4.32) 
will have passed. Obviously, the phase shift of the calibrating converted signal is 

where Aw is the magnitude of ficquency change of the FM oscillator during the 
period from t b  to t,, zd is the dela? time of the signal in the delay line, and n is the 
number of periods of the calibrating converted signal. 

The nonlinearity of the FM oscillator modulation characteristic does not influ- 
ence the magnitude of the phasi. shift Acp,, as during measurement an integral 
number of periods of the calibratrng converted signal has passed. The phase shlft 
of the measuring converted signal is 

where k is an integral number of half-cycles in the period tb...te Substituting Aw 
fiom (4.54) in (4.55) and solving Yor r,  we obtain 

where C = ~ ~ 1 2 n n  = const, a coelficient defined only by parameters of the delay 
line and the number of periods n, d u c h  are known for the given instrument. 
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Instability of the center frequency and slope of the modulation characteristic 
of the FM oscillator do not influence the error in measurement of delay time of the 
target echo. Let us estimate the effect of target motion on measurement error. For 
this purpose assume that as a result of motion the phase shift is shifted to magni- 
tude 6q1 for a modulation period. Then 6 9  = Ao62, where 62 is the variation of 
time delay for a modulation period. From the last formula it is easy to obtain the 
expression for the allowable speed of the target 

where 6 0  is determined in degrees, and C is the velocity of light. 
For example, if 6 0  = 0. lo and F,,, = 1 kHz, V = 0.4 mls. For targets requiring 

such precise measurement (for example, in liquid-level measurement in wrap- 
around tanks), such speed is not experienced. For example, variation of gasoline 
level with such speed in the reservoir of a filling station with the surface space 
3m x 6m corresponds to speed of fill in (or draining) 7.2 m3/s, which is completely 
unrealistic. 
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Chapter 5 

Spectral Methods of Processing 
the Converted Signal 

5.1 GENERAL DESCRIPTION 

As indicated by its name., this processing method uses the parameters of the con- 
verted signal spectrum to obtain information on target range and radial velocity. 
These target parameters are measured by: 

Dependence of the amplitudes of spectral components on target range; 
Doppler frequency shift of spectral components; 
Phase of spectral components. 

Spectral processing is most easily applied in SRRs using the block diagrams 
Figures 2.3 or 2.4 (see Chapter 21. In these circuits, the spectrum of the converted 
signal is in the range of fi-equenc~es that are multiples of the modulation frequency 
(i.e., rather low frequencies), substantially simplifying realization of the processing 
circuits. We will therefore examme the methods of spectral processing only with 
reference to such circuits. 

The major advantage of spectral processing is the opportunity for the SRR to 
resolve several targets. As was shown in Section 4.1, the converted signal in this 
case represents the sum of the converted signals from each target. From spectral 
analysis theory it follows that the spectrum of the sum of the signals is equal to the 
sum of the spectra of each of them. Thus, using distinctions between signal spec- 
tra, it is possible to identify them separately. 

Let us consider briefly the opportunities for use of the listed parameters of the 
converted signal spectrum. As follows from the analysis of Chapter 2, the depend- 
ence on target range of spectral component amplitudes of the converted signal is 
defmed by the transmitted signal modulation waveform and the reflected signal 
level. This dependence is shown most distinctly in the case of asymmetrical 



90 Fundamentals of Short-Range FM Radar 

Figure 5.1 Variation of the Mh component amplitude with range. 

sawtooth modulation. In the following, unless noted otherwise, we examine the 
spectrum for this type of modulation. 

To derive this dependence we express z as a function of R in (3 .20) ,  obtaining 
the range dependence of the amplitude of the kth component. A diagram of this 
dependence is shown in Figure 5.1, for the larger component of the kth pair in the 
spectrum, whose amplitude given by 

sin x(Af r - k )  
U! = u, x(Af 7- k )  

The range corresponding to the maximum amplitude of the kth component is 
determined by k and by the frequency deviation of the transmitted signal. At the 
same time, the range resolution M, corresponding to the base width of the main 
response lobe, is determined only by the ti-equency deviation. Figure 5.2 shows a 
three-dimensional plot of the dependence on target range of the spectral compo- 
nent amplitudes. As we can see each spectral component reaches a maximum only 
for a particular value of range. We can measure range with a certain error using 
the number (or in practice the ti-equency) of the largest spectral component. 

To obtain a spectral plot of echoes from a single target we take a section of 
Figure 5.2 in a plane perpendicular to the abscissa at a point corresponding to the 
target range. For example, in Figure 5.2,  R = 3.3 C12AJ: 

If there are two or more targets located at different ranges and within the an- 
tenna beam, we make two or more projections (Figure 5.3). As we can see, it is 
possible to resolve these objects and to measure the range of each. Note also that it 
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Figure 5.2 Spectral component amplitude dependence on target range 

is possible to use combinations of spectral components on the basis of dependence 
of their amplitudes on target range in realizing processing algorithms. 

Consider now the phases of spectral components of the converted signal. In 
this case, as follows from the analysis in Chapter 2, the phases of spectral compo- 
nents do not depend on the frequency modulation waveform. For any modulation 
the phase of the kth component with frequency K2, + RD is 

and for components with fiequenc y n R ,  - CID, 

Thus the information on target range and radial velocity is present in the phase of 
any spectral component. The phae angles cp, = 0,To and MZ,2/2 contain the range 
information, while angles q ( ~ )  and v ( z )  are equal or to zero or 7112 for the usual 
modulation waveforms. It is also useful to note that the kth component pair with 
frequencies kQ, + RD and MZ,  - RD has phase angles cp, and cpo with different 
signs. As will be shown below, thvs permits cancellation of these angles. For range 
measurement it is also possible to use the phase angle MZ,d2, but for thls a par- 
ticular relationship of the modulation period to the reflected signal delay time is 
necessary. 

On the basis of this brief reJriew, we conclude that the use of the converted 
signal spectrum provides ample opportunities for design of various signal processing 
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algorithms and circuits. To work with a spectrum we must have it physically, but a 
mixer output contains the converted signal rather than its spectrum. Hence, we 
must process the converted signal in such a way as to extract its spectral parame- 
ters. Let us review this question in more detail. 

In Chapters 2 and 3 the analysis of the converted signal spectrum was carried 
out to obtain its essential characteristics. In this case the spectral analysis of a 
Jirnction (the converted signal), given by its analytical expression, was carried out. 
Accordingly the spectrum was calculated analytically. In this chapter there is an 
analysis of a spectrum of a physical process (the converted signal) as it appears 
(i.e., in real time). Clearly this analysis must be onlyphysical, and a corresponding 
circuit block, which we name the analyzer, is necessary for processing the con- 
verted signal. 

Thus, spectral processing the converted signal depends on an analyzer whose 
output is a signal representing the converted signal spectrum in an appropriate 
form. This signal passes to the input of the spectral processing block, which as a 
rule exchanges information with the modulator and the output display. The pro- 
cessing block is in essence a special computer that processes the input information 
and produces the appropriate signal on the display. The program on which this 
computer works is defined by many SRR technical parameters. 

Hence, the end result of spectral processing of the converted signal depends 
not only on its spectral parameters but also on properties of the analyzer and the 
processing block. An important feature of spectral processing is its ability to 
measure radial velocity of the target, including the sign of this velocity as well as 
its magnitude, simultaneously with range measurement. This ability depends on the 
Doppler shift of spectral components relative to frequencies that are multiples of 
the modulation frequency (see Chapter 3). Techmcally, measurement of speed is 
reduced to measurement of Doppler frequency. Methods of measurement of signal 

Figure 5.3 Spectrum component amplitude dependence on target range (two or more targets). 
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frequency and selection of its sign are well known, and therefore are not discussed 
in this chapter. 

5.2 RANGE RESOLUTION 

It is worth considering the question of SRR resolution, assuming that asymmetrical 
sawtooth modulation is used. Le! us consider first an idealized picture of target 
arrangement. 

We assume that there are hvo point targets in the main lobe of the SRR an- 
tenna pattern. The reflected signals from these targets are identical. The signal 
delays of the targets are r ,  and rz, and the quantities Afr, = k and Afi2 = n are 
equal, where k and n are integers. In thls case the spectra of the target signals con- 
sist of unique components with frequencies k f l ,  and nR, respectively, and the 
spectrum analyzer can identify these components as belonging to two targets. The 
minimal radial distance between the targets that can be resolved corresponds to k + 
1 = n [i.e., components appear as in Figure 5.4(a)]. Then from (3.20) it follows 
that AfAz = 1 and the minlrnal resolvable radial distance between the two targets is 

Clearly thls arrangement of targets is improbable. However, (5.4) defines the 
maximum possible range resolut~lon of an FM SRR that serves as a reference for 
the actual range resolution. 

Now let us assume that the mgets are located such that AfAs, = k f 0.5 and 
AfArz = n + 0.5 are equal, the most adverse condition for target resolution. In this 
case, two components located in the main lobe of the spectrum are produced by 
each object and the sidelobe components are maximal [Figure 5.4(b)]. If the 
maximal spectra components are adjacent, then AfAz = 2, and accordingly 

Certainly, for more reliable resolution between the maximal components there 
should be at least a minimal separation of one spectral component [Figure 5.4(c)], 
in which case 

C m=3&," =1.5- 
Af 

(5.6) 

The value of AR given by 115.5) or (5.6) is actually the theoretical optimal 
range resolution. Formally, we may draw the conclusion kom (5.6) that AR is 
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Figure 5.4 Illustration of range resolution for a fixed target. 

limited only by the frequency deviation, but this is not absolutely true. This con- 
clusion is applicable to SRRs operating at rather small ranges (e.g., several tens of 
meters) where very high resolution is required. For example, for AR = 1.5m a de- 
viation near 300 MHz is required. At greater ranges (e.g., hundreds of meters or a 
few kilometers) resolution is limited also by the number of detectable spectral 
components. For given values of frequency deviation and target range the number 
of the largest spectral component is 

Determining from (5.6) a frequency deviation and substituting it into (5.7), we 
obtain 

From (5.8) it follows, for example, that with R = 1500m and AR = 15m, then 
n = 300 and the required value of deviation is not too large: 30 MHz. Processing 
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of such numbers of components demands very hlgh lmearity in the modulation 
characteristic of the FM transmitter, as well as in the modulating signal (see Sec- 
tion 3.5). Therefore, it is more usual to have 

The analysis of spectra and range resolution becomes sigmficantly more compli- 
cated if the reflected target signals are unequal and the targets are moving, corre- 
sponding to most real situations. 1 he sidelobes of one spectrum may then be larger 
than the main lobe of the other [Figure 5.5(a)]. Thus resolution of two targets is 
possible only when the main spectral lobe of the smaller signal exceeds by a cer- 
tain ratio the sidelobes of the larger signal. The distance between objects at which 
this condition is satisfied is the resolution appropriate to these conditions [Fig- 
ure 5.5(b)]. 

Consider an example (Figure 5.6) in which the fust target signal exceeds by 
10 dB that of the second. We will assume that for reliable resolution of the second 
target we need a 5-dB ratio of components in the main lobe of its spectrum to 
those in the sidelobes of the fusa target. Let us calculate an allowable level of 
sidelobes in the spectrum of the first signal. This level should be no more than the 
sum of 

-10 dB (the difference between the fust and second signals) 
-4 dB (the worst-case reduction of components in the main lobe 

envelope of the second signal spectrum) 
-5 dB (the ratio of components in the main lobe envelope of the 

second signal above components in sidelobes of the first) 

= -19 dB (allowable sidelobe level). 

b) 

Figure 5.5 Illustrat~on of range resoluti~n for unequal reflected target signals 
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Figure 5.6 Range resolution for targets of different amplitudes. 

In Figure 5.6 it is easily established that the main lobe of the second signal 
spectrum may be near the third and fourth sidelobes of the first signal spectrum. 
Thus 

C 
AR=4AR,,,i, =2- (5.10) 

Af 

In Figure 5.7 results of similar calculations (dashed curves) are shown. The ab- 
scissa is the ratio of the two signals PIIP2 and the ordinate is the ratio of actual 

'0  10 20 30 [dB] 

Figure 5.7 Ratio of range resolution to optimum value with weighting (solid line) and without 
(dashed line). 
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range resolution to maximum range resolution. The parameter of the curves is the 
ratio of components in the main lobe envelope of the smaller signal to those in the 
sidelobe envelope of the larger signal. 

As we can see, the SRR resolution decreases sharply with increase in the ratio 
of one signal to the other. The main reason for reduction of resolution is the slow 
reduction of sidelobes of the converted signal spectrum. 

As noted in Chapter .3, the sdelobes result from phase discontinuities at the 
ends of the modulation period. Thlerefore, it is logical to propose that for sidelobe 
reduction the converted signal should be amplitude modulated so that its amplitude 
drops to zero at the ends of the period. This reduction in amplitude should occur 
smoothly, without a break of the envelope near the end of the period (i.e., the de- 
rivative of the envelope at the ends of the period should go to zero). This method 
has been known for a long time and is usually termed weighting [I]. 

We can show that the most suitable modulation function (weightinghnction) 
for the converted signal envelope 1s cos2(x/~,,,). Since 

it follows that the optimum converted signal is amplitude modulated with a cosine 
envelope. According to (2.24) and (5.1 l), this signal is 

Then, according to (2.27), each component of the converted signal spectrum is 
also an AM waveform, and the srdebands of each are summed with the adjacent 
components. The amplitude of the kth component is 

U, sin [x(Af z - k)] sin [n(Af T - k + I)] sin [ x ( ~ f  z - k - 1)] 
U =-{ t + (5.13) 

" 2 x(Afz-k) 2x(Aft-k+1) 2x(Afz-k-1) 

It is easy to explain the effect of sidelobe suppression if we consider a spectrum, 
taking into account the "sign" of the amplitudes of its components. 

In Figure 5.8(a) the components of the spectrum are shown for Aft = k f 0.5 
without multiplication by a weighting function. Upon multiplication of each com- 
ponent by the weighting hc t ion ,  two sidebands appear that are in an antiphase 
with the next components (except for two components in the main lobe numbered 
3 and 4). So, in (b) the right sideband of 1 is in an antiphase with 2. In (c), the 
sidebands of 2, in turn, are in an antiphase with 1 and 3, while in (d), the sidebands 
of 3 are in an antiphase with thost. of 2 and in-phase with those of 4, and so forth. 
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Figure 5.8 Explanation of weighting processing. 

As a result of the addition of all spectral components in (f) components 3 and 4 are 
increased and all others considerably decreased. 

Figure 5.9 shows the spectral envelopes with and without weighting. The left 
side of the envelope is not shown, as the envelope is symmetrical about the center 
of the main lobe. The two first rows of numbers above the sidelobes show the ratio 
of sidelobe to main lobe in decibels, the top line without weighting and the center 
row with weighting. The bottom row shows by how many decibels the appropriate 
lobe has been decreased by weighting. We can see that multiplication by the 
weighting function broadens the main lobe while significantly decreasing the 
sidelobes. It is especially important that the nearest sidelobes have decreased by 
14-25 dB. 

Results of range resolution calculations with weighting are shown in Fig- 
ure 5.7 (solid line). We can see that with increasing ratio of one signal to the other 
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Figure 5.9 The fragments of a spectral envelope. 

the range resolution changes only slightly, and is approximately two to three times 
worse than the maximum. Thus, the application of weighting of the converted sig- 
nal is quite effective. 

Techmcally it is simple to v,eight the converted signal. The weighting func- 
tion is formed &om the first harmonic of the modulating signal spectrum. Modem 
technology also permits very simple multiplication of the converted signal by the 
weighting hnction. 

5.3 RADAR SCAN OF RANGE 

As in pulse radar, it is possible in SRR to use displays such as A, B, or J type, on 
whlch target range is presented. In SRR, the range data displayed on the indicator 
is derived from analysis of the converted signal spectrum. We note that here the 
term analysis is understood in a completely different sense from that used in Chap- 
ters 2 and 3. In this case analysis of the spectrum is defined by the operating algo- 
rithm of the processing block, and the result of this analysis is a range estimate 
presented in an appropriate way on the indicator. Thus, for realization of range 
estimation it is necessary first of d l  to obtain at the output of the analyzer a signal 
representing the converted signal spectrum. 

There are two methods of generating such signals: simultaneous analysis and 
sequential analysis. In the first the analyzer is implemented as a bank of bandpass 
filters with resonant frequencies nQ, and passbands 2Rh, (Figure 5.10). The 
converted signal is applied to all filters simultaneously, and the signal correspond- 
ing to the nth component of the cmverted signal spectrum appears at the output of 
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Filter 

++I 
Filter L To the system 

From H:b-* of converted 
mixer -, , -t signal spednrm 

Filter q-' 
Figure 5.10 The simultaneous analyzer. 

filter n. Signals kom the filter outputs are applied simultaneously and continuously 
to the input of the processing block. 

In the second method a single bandpass filter with variable resonant frequency 
is used. The resonant frequency of this filter is scanned to cover sequentially the 
frequencies of spectral components. As the resonant frequency of the filter scans 
past each of the n components, a signal corresponding to this component appears 
at the filter output. This method is termed sequential analysis. 

Simultaneous analysis certainly has advantages over sequential: the informa- 
tion on amplitude of every spectral component is present at all times at the ana- 
lyzer output and may be extracted at any moment. It is also very important that it is 
possible with simultaneous analysis to neglect transients from moving targets, be- 
cause the time for a change in amplitude of the moving target component is much 
greater than the transient time of the filters. This is easily shown in an example. 

The buildup time of a signal at the output of a bandpass filter after input of a 
sinusoidal signal at the filter's resonant frequency is tb = 0.8/B, where B is the 
passband of the filter. In this case 

The time over which the amplitude of a spectral component may change fiom zero 
to its maximum (see Figure 5.1) is 

Sincef, >> Af then tb << At. 
Simultaneous analysis has a major disadvantage in that the analyzer circuit is 

very bulky. Thls results fiom the need for large numbers of filters, as can be shown 
by an elementary calculation. Assuming that the ratio of the maximal to minimal 
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range is q, and the number of the spectral component appropriate to the minimal 
rmge is n, then the number of filtcrs is qn - n = n(q - 1). For example, if q = 10, 
and n = 5 there must be 45 filters. Reduction of n is not always possible for two 
reasons: (a) because of the: need to filter out of the signal any parasitic amplitude 
modulation, and (b) because of the required range resolution (when the frequency 
deviation is large the range resolution is better, and large frequency deviation re- 
quires large n). 

It is possible to reduce the number of filters by dividing the range coverage 
into two or more subbands. It is the most convenient if these subbands have identi- 
cal ratios q' = &&, where k is the number of subbands. Accordingly, the frequency 
deviation of the transmitted signal should decrease by the factor q' at each transi- 
tion to the next sub-band. Only then will it be possible to use the same complete 
bank of analyzer filters in all subbands. Because of deviation reduction, the extent 
of each successive subband is increased by q' and the range resolution is worsened 
by q', but the ratio of resolution s i x  to subband size remains constant. 

Let us proceed to consider the operation of an analyzer performing sequential 
analysis. Despite its apparent simphcity, realization of this analyzer involves some 
technical difficulties. First, we note that if frequency agility is used a certain time 
is necessary to observe each set o f  spectral components. The speed of frequency 
agility cannot be more than a certain value, as otherwise the amplitude-frequency 
characteristic of the filter will be distorted, with resulting distortion of the analysis. 
Thus, while for simultaneous analysis we use "by default" the static amplitude- 
frequency characteristics of the analyzer filters, for sequential analysis we must 
consider the dynamic amplitude-frequency characteristic of the agile filter. The 
resulting difficulties are connected with the realization of filter agility over a wide 
range of frequencies and especially with maintaining invariance of its amplitude- 
frequency characteristic. Therefore, it is best to apply analyzer designs that do not 
require filter agility. There are two possible methods. 

The first method is to transfer the converted signal spectrum to another fre- 
quency range and periodically scan the narrowband filter. This analyzer circuit is 
equivalent to the conventional superheterodyne receiver (Figure 5.11). The het- 
erodyne (local oscillator) sweep is a sawtooth function and its frequency deviation 
equals the instrumented extent of the converted signal spectrum. The receiver is 
thus periodically tuned to all frequencies in this portion of the converted signal 
spectrum, while the narrowband fvlter is tuned to the intermediate frequency and 

microwave f~lter filter 
mixer To the system 

of converted 
signal specbum 

processing 
Hsterodyne- Modulator 

Figure 5.11 The sequential analyzer. 
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Figure 5.12 Frequency relationships in the sequential analyzer 

does not need agility. The acceptance filter of the receiver is a fixed, broadband 
LPF filter. To obtain good image-channel rejection while passing the desired sig- 
nal, the intermediate frequency is chosen higher than the highest frequency of the 
instrumented extent of the converted signal spectrum. The relationships among this 
spectrum, the range of heterodyne frequencies, and the intermediate frequency are 
shown in Figure 5.12. 

Thus, the filter does not scan across the frequencies of the converted signal 
spectrum, but rather the spectrum is scanned across the fixed filter bandpass. 

The moving spectrum entering the filter generates a transient resulting from 
the influence on the filter of the linearly varying frequency. Thus, the amplitude- 
frequency characteristic of the filter is distorted: there is a shift of its maximum 
and a broadening of its passband. The more rapid the signal frequency variation 
the more strongly distorted is the amplitude-frequency characteristic. In Fig- 
ure 5.13 the amplitude-frequency characteristics of the filter are shown for (a) 
static and (b) dynamic conditions, as a function of the normalized detuning 

Where 00 is the resonant frequency of the filter and AR is half its 3-dB bandwidth. 
There are many theoretical works devoted to analysis of varying-frequency 

signals in selective circuits. In this case, it is best to estimate the allowable rate of 

-2 -1 0 1 2 

Figure 5.13 Amplitude-frequency characteristics under (a) static and (b) dynamic conditions. 
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change of the heterodyne frequency using works where simple formulas for engi- 
neering calculation of amplitude-frequency characteristic distortions are given. 
Such formulas are found, for example, in [2], which we will use to estimate the 
allowable rate of heterodyne frequency change of the analyzer. Let the heterodyne 
frequency vary linearly: 

where a is the rate of frequency change. It is obvious that the spectrum moves with 
the same rate relative to the fixed filter. For fixther calculations a parameter pro- 
portional to the speed of heterodyne frequency change is defined as 

where AR is half the passband of the narrowband filter. In our case ACl = Cl-. 
Parameters of the dynamic: characteristic of the filter are determined by p. 

In particular in [2] it is shown that a flat amplitude-frequency characteristic 
(e.g., the characteristic of a double-tuned filter) is distorted to the greatest degree. 
Broadening of the passband (in telms of normalized detuning) is 

The average displacement of the characteristic is 

fiom which we obtain 

Given the allowable rate of change of analyzer heterodyne frequency, it is 
possible to determine the minimal analysis time for the entire converted signal 
spectrum or the minimal period of'modulation of the heterodyne frequency 

where q and n are numbers of the highest and lowest spectral components, respec- 
tively. 

To estimate Tmh consider the following example. Let Fh, = 10 kHz (the 
Doppler frequency observed in I- or K-band with a radial velocity - 100-150 
kdh ) .  The ratio RJR,, does not usually exceed 10. Assume (q - n) = 20, and 
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6 = 0.01 (a value so small that the dynamic characteristic does not differ signifi- 
cantly £rom the static). Shift of the characteristic is also negligibly small: 
6 = 0.042. Substituting this data in (5.22), we find Tmh = 0.16s. Varying the initial 
data shows that the time to scan this range interval does not exceed fractions of a 
second. 

Let us proceed to consideration of the second method of realizing a single- 
filter analyzer. This method is based on the fact that the amplitude of any spectral 
component depends on the product A h .  Hence, dependence of amplitude of the 
nth component on delay time, for constant deviation, or on size of the deviation, 
for constant delay, are identical. Actually, if the filter is tuned to frequency nR, 
and the delay of the reflected signal is T, there is some value of deviation at which 
the product Aft = n applies and the output signal is maximal. Hence, for periodic 
display of the entire range interval we must change the value of frequency devia- 
tion periodically, smoothly and within the certain limits. 

The block diagram of such an analyzer is given in Figure 5.14. The narrow- 
band filter is tuned to frequency nRm and has a passband 2R,,. The number of 
the selected spectral component depends on the size of parasitic amplitude modu- 
lation signals and the required SRR resolution. In most cases the value of n does 
not exceed 10 to 20. 

A block is included between the modulator and the FM generator to apply 
sawtooth amplitude modulation. This block is controlled by a signal periodic at 
TmM generated in the control signal generator, from which signals also go to the 
processing block and the display. To obtain a linear scale of range on the display, 
we must change the frequency deviation according to a certain law, for which we 
refer to Figure 5.15. 

Figure 5.15(a) shows the display sweep signal. For a linear range scale the 
dependence of the indicated range on sweep time [Figure 5.15(b)] should be also 
linear: 

Narrowband To the system 
filter nR, of converted 

signal spectrum r processing 

Amplitude To From 
transmitter modulator modulator 

Figure 5.14 The sequential analyzer. 
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Figure 5.15 Derivation of the look time: I a) display sweep signal, (b) range sweep, (c) change in 
transmitted frequency deviation, and (d) time for change from one spectral component to the next. 

where 6r = 2(R,, - R,,)IC. Usink: the ratio Afr = n, we obtain 

Hence, for the period of range estimation the frequency deviation of the radiated 
signal [Figure 5.15(c)] should vary on a hyperbola from nlr,,,,,, to nlr,. 

To determine the minimal duration of the sweep period TmM, note first that 
only the amplitude of the appropriate spectral component varies with a change of 
dewation. Therefore the transient process is characterized by the transient time of 
the filter output signal as it responds to change of the input signal. Transient time 
was given by (5.14), and this time needs to be compared to the time for change 
fiom zero to maximum value of the nth spectral component. We designate thls 
time as At [Figure 5.15(d)]. Thk spectral component changes from zero to its 
maximum with a change of frequency deviation from nlr to (n - l)/r (i.e., by an 
amount llr). The time in which the deviation will change by this amount is deter- 
mined by the rate of change of the frequency deviation. In Figure 5.16(c) we see 
that the greatest deviation rate corresponds to its value at t = 0. Differentiating 
(5.24) with respect to t and setting t = 0, we obtain 
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Then, from Figure 5.15(d), we have 

Assuming that At = lotb = 4/FD, we have 

The sweep period Tmd for n = 20, T,,/T- = 10, and FD = 10 kHz is found to be 
Tmd = 72 ms. Thus, even with such hard constraints, when the transient time in the 
filter is an order less than the time of selected spectral component change, the 
sweep time does not exceed several tens of milliseconds. 

In this case, however, we must estimate the period Tm6 on a completely dif- 
ferent basis. With a change of deviation there is a change in the converted signal 
spectrum (i.e., we must deal with the current spectrum, although strictly speaking 
the spectra of physical processes are always current because the spectra obtained 
mathematically are true only as t + oo). A spectral change in a physical process 
requires a certain time to observe. For the case considered this means that the rate 
of change of frequency deviation must be limited, or else the spectrum of the con- 
verted signal will differ considerably from that calculated in Chapter 3. 

Strict calculation of the current spectrum of the converted signal with change 
in frequency deviation is very complex. However, an approximate calculation of 
the necessary sweep period Tmd is simple to perform, assuming that in time At 
[Figure 5.15(d)] the nth component of the spectrum can be successfully generated. 
Thus, the problem is reduced to calculation of the current spectrum of a sinusoid 
in the time At and, further, to calculation of Tm6 depending on the necessary de- 
gree of formation of the converted signal spectrum. To perform this approximate 
calculation we will consider again the current spectrum of a sinusoid. 

By definition of the current spectrum, ifAt) = s i d t ,  then the current spectrum 
is determined as 

This equation can be significantly simplified by considering values of spectral 
density for discrete moments of time 
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Having substituted (5.29) in (5.28). we obtain 

and the current spectrum is 

In (5.3 1) the sine function corresponds to even k, and the cosine fimction to odd k. 
The uncertainty of (5.3 1) at o = C2 can be easily resolved: 

Thus, the spectral density at frequency o = R increases linearly with time. 
From (5.3 1) it follows first th,at the spectrum is homogeneous, as is the spec- 

trum of any short-term process. Further, the spectral lobing shown in Figure 5.16 
is gradually formed. The envelope's main lobe is eventually increased and be- 
comes more and more narrow, and only in a limit as t +w does the lobe turn into a 
discrete line. 

In our case the degree of spectrum formation is easiest to estimate based on 
the width of the spectral envelope's main lobe. Let us determine this width as a 
function of the factor k. The value$ o /O  corresponding to sin[(kd2)(w/O)] = 0 are 
determined from 

Figure 5.16 Current spectrum ol'a sinusoid 
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whereq=O,fl,k2,E3, ... 
The value q = 0 corresponds to the maximum of the spectrum main lobe and 

the values q = Ifrl to the first nulls, for which we obtain 

Thus, for the current spectral envelope of a sinusoid, the null-to-null width of the 
main lobe is 

As we can see (5.35) relates the width of the spectral main lobe to time through 
(5.29). Defining k from (5.35) and substituting it in (5.29), we obtain 

As the criterion for formation of the spectrum we use the ratio of mainlobe 
width to half the passband of the analyzer filter (i.e., we assume that do 2 ?aD, 
and y << 1). Then, equating (5.26) and (5.36), we obtain 

As we can see, the values of TmM determined by (5.27) and (5.37) have the same 
order. Usually values of TmMare between several tenths and units of seconds. The 
limit to increase in the analysis time depends also on the requirement that there be 
no serious distortion of the spectrum caused by target motion during the analysis, 
as may occur for high target speeds at small ranges. 

One more method of realization of sequential analysis of the converted signal 
spectrum is possible. In this method the modulation frequency is changed while 
the fiequency deviation remains constant. With change in the modulation fie- 
quency, the spectrum of the converted signal is stretched or compressed on the 
fiequency axis. There will always be a modulation frequency such that the fre- 
quency of the nth spectrum component will coincide with the fiequency of the 
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analyzer filter. This method has no advantages in comparison with those consid- 
ered above, and hence details of this method are not considered here. 

In conclusion, we consider the problem of normalization of the converted sig- 
nal for use in the spectral processung methods discussed above. In Chapter 4 (see 
Section 4.2.2), a method of signal normalization with simultaneous suppression of 
parasitic amplitude modulation signals was described, using an amplifier with a 
nonuniform amplitude-frequency characteristic. Such an amplifier may also be 
included between the mixer and the analyzer in the simultaneous or sequential 
analyzer. For improved normalization we may also include an AGC circuit in this 
amplifier, which will be followed by the weighting block. Inclusion of such an 
amplifier in the analyzer using change of frequency deviation is obviously not 
meaningful. Actually, for A ~ T  = 0.  the basic part of the spectrum concentrates 
around the nth component, where n is fairly high (in most cases between 10 and 
20). This provides adequate select~vity with respect to parasitic amplitude modula- 
tion signals. 

5.4 SPECTRAL PROCESSIN'G USING THE PARASITIC AM SIGNAL 

In some cases (e.g., for SRRs used in security systems) we must detect targets at 
short range. In this case the spectrum of the converted signal overlaps that of the 
parasitic amplitude modulation signal (see Section 4.2). To extract the useful sig- 
nal against the background of parasitic amplitude modulation we may certainly 
apply a rejection filter (as in Section 4.2), but another method is possible that may 
be preferable. For consideration crf this method we address Figure 5.17. Here the 
components of the converted signill spectrum together with the spectrum of a para- 
sitic signal are shown for (a) sirvusoidal modulation and (b) asymmetrical saw- 
tooth modulation. The spectral components of the parasitic signal are shown by 
dashed lines. As we can see, the three spectral components (the parasitic signal 
and spectral components of the converted signal located near it) are formally simi- 
lar to the spectra of (a) an AM signal or (b) an AM-PM signal. 

Thus, it is possible to extract the spectral components with a bandpass filter 
and detect them with an amplitude detector. Such detection produces a Doppler 
signal whose amplitude varies with range, according to the law of change of ampli- 

Figure 5.17 Spectral components of cowerted and parasitic signals 
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Figure 5.18 Phasor diagrams: (a) AM signal, (b) detected signal for sinusoidal modulation, and 
(c) detected signal for asymmetrical sawtooth modulation. 

tude of the nth spectral component of the converted signal. Thls signal may be 
funher processed in the same way as the nth component of a signal with frequency 
nR, 2 RD. 

The nth component signal at the bandpass filter output is, however, only for- 
mally an AM signal, as the phase relationships peculiar to an AM signal are not 
present. In an AM signal the sidebands are always located symmetrically about the 
carrier fiequency, as in Figure 5.18(a). In our case the arrangement of "sidebands" 
with respect to the "carrier" is arbitrary, being defined by the phase of the carrier 
and angles cp, and cpo of sidebands. In particular, the vector diagram of this signal 
may appear as shown in Figure 5.18(b), corresponding to a PM signal with very 
small AM rather than to an AM signal. Therefore, in applying this processing 
method it is best to apply asymmetrical sawtooth modulation. In this case, because 
of the inequality of sidebands, the necessary amplitude modulation holds for any 
arbitrary position of the sidebands relative to the carrier, as shown in Figure 
5.18(c). 

A block diagram of this type of processing system is shown in Figure 5.19. 
The principle of operation and structure of the Doppler signal processing block is 
determined by the assigned function of the SRR and its technical parameters. 

We must note that this SRR responds only to moving targets. It is a major ad- 
vantage of this processing method that it allows very simple selection of moving 
targets against a fured background. 

Band-selective 
filter n& 

From mixer , Band-seledive Amplitude 4 System, 
filter (n+l)&, detector Doppler signal Display 
--.-- ---- 

Figure 5.19 Block diagram of the processing system using a parasitic AM signal. 
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5.5 SIGNAL PROCESSING ON SEPARATE COMPONENTS OF THE 
CONVERTED SIGNAL SPECTRUM 

It is obvious from the previous discussion that the entire spectrum of the converted 
signal is used for coverage of space by an SRR with spectral processing. Thus the 
target range is determined rather co~arsely, usually with an error of a few percent of 
that range. The individual spectral components must be used for more exact mea- 
surement of range and velocity. 

5.5.1 Formation of the Discriminator Characteristic 

The target range is estimated during a scan of range and azimuth with an error 
approximately equal to the SRR target resolution. There is often a requirement for 
more exact measurement of range to individual targets. It is possible to do this 
using the fvted frequency deviation method described above with a suitable dis- 
criminator characteristic (see Section 4.4.3). Such a characteristic can easily be 
obtained for asymmetrical sawtooth modulation by subtracting the amplitudes of 
two adjacent spectral components of the converted signal. The appropriate circuit 
of this discriminator is shown in Figure 5.20. Here the components n and n + 1 are 
extracted fi-om the spectrum by bandpass filters. The filter output signals are de- 
tected by amplitude detectors and applied to the subtraction block. 

In the absence of weight processing the equation for the discriminator charac- 
teristic is 

sin n(Af 7 - n )  sin n(Af T - n - 1) 
u(*j, T, n )  = u (I- --I - 1 

n(Afr - n)  K ( A ~  T - n - 1) 

Band-selective Amplitude 
filter nQm detector 

From mixer 

Band-selective Amplitude 
filter (n+l)nm detector 

Figure 5.20 Block diagram of the discriminator. 

1 (5.39) 

f AfR 
sinn(150-n-~) ~f R 

n ( Z n - I )  
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where fiequency deviation is in megahertz and range is in meters. A similar equa- 
tion can also be written for weighted processing. Figure 5.2 l shows the discrimi- 
nator characteristics for unweighted and weighed processors. 

To find the slope of the characteristic near its null, we differentiate (5.39) with 
respect to R and substitute the appropriate value of R, obtaining for (a) 

Similarly, for (b) 

An important parameter of the discriminator characteristic is its sidelobe 
level. With a strong reflected signal there may be an automatic false lock on a 
sidelobe of the discriminator characteristic. In this respect characteristic (b) is 
preferable, since the level of its first sidelobe is more than 14 dB less than that of 
(4 .  

The range error depends on many parameters of the automatic fiequency de- 
viation control system and on error in measurement of the deviation. It is possible, 
however, to estimate the error using the discriminator characteristic. Assume that 
in the established mode an error signal at the discriminator output is k times less 
than the maximal value of the output signal. Then we find for characteristic (a) 
6R = llkS and 6RIR = 1/[1.27k(2n - l)] and for (b) 6RIR = 2/[k(2n + l)] or 
6RIR = 112kn. 

Note also that the discrimination characteristic does not depend upon Doppler 
shift, which is an advantage of this discriminator. 

Figure 5.21 Discriminator characteristics for (a) unweighted and (b) weighted processing. 
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5.5.2 Phase Processing of Separate Components of the Converted Signal 
Spectrum 

5.5.2.1 Use of an FM Signal Instead of a Multiple-Frequency Signal 

It has been shown [3] that phase processing of the reflected signal permits mea- 
surement of target range with very small error. Thus, a multiple-frequency trans- 
mitted signal consisting of several sinusoidal waves with different frequencies can 
be used instead of a modulated signal. Such a radar is described in [3]. For con- 
venience in further discussions, we will give a brief description of this radar, 
whose block diagram is shown in Figure 5.22. 

The transmitter consists of n owillators with frequencies 

where 60,  < 6w2 . . .< 60, _ << 00.  The oscillator signals are summed and applied 
to the transmitting antenna. Signals fiom each oscillator are also applied to the 
appropriate mixer as a heterodyne signal. All mixers are fed from the receiving 
antenna. It is assumed that the decoupling between antennas is sufficient that leak- 
age of the radiated signal between transmitter and receiver can be neglected. Use 
of a single antenna may be possible because 60, << 0,. 

Receiving F 

Figure 5.22 Block diagram of the multifrequency radar 
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A Doppler filter is included at the output of each mixer. If 6ok >> ah, it is 
possible to consider that each mixer will pass only that echo signal whose £re- 
quency corresponds to the frequency of "its own" heterodyne signal. We assume 
further that the target moves at a constant radial speed corresponding to the Dop- 
pler shift nD. Then, using (2.10) and (2.14) and assuming that Ao = 0, we obtain 
expressions for the phases of mixer outputs 

Because differences between signal frequencies are very small (as will be 
shown below) we may assume that 

Then, for example, the phase difference between signals from mixers 1 and 2 is 

and between mixers 2 and 3 is 

Target range can be measured by determining this phase difference with a phase 
detector. Thus, a limit of unambiguous measurement of range, restricted by the 
size of phase difference A(P~-~(T) = 2n, is 

The measurement error depends on the frequency separation and the error of 
phase measurement. If we can measure a phase difference with an error of lo  the 
measurement error at maximal range will be - 0.3%. By increasing the frequency 
separation by a factor of ten we can reduce the error to - 0.03%, but then there 
will be an ambiguity in measurement of range. 

Thus there are two opposing requirements on the fi-equency separation: to re- 
duce error the frequency separation should be increased, while for elimination of 
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measurement ambiguity it should be reduced. To satisfy both of these require- 
ments, the number of frequencies trmmitted is usually increased to three, four, or 
more. For example, with thee frequencies the separation between the first two is 
made small enough for unambiguous range measurement, while separation of the 
third is large enough to provide the required accuracy of range measurement and is 
a multiple of the separation of first two frequencies. If the required accuracy is not 
provided by this, the number of frequencies can be increased. 

Thus, by rather simple means, it is possible to realize the measurement of 
range with an error no more than 0.001% or even 0.0001%. At the same time there 
is a disadvantage to this method of measurement: the impossibility of range mea- 
surement on fmed targets. To measure range to a fixed target we must install a 
reflector on it to simulate a Doppler shift, but this is inconvenient and not always 
possible. This disadvantage is avoided by application of FM to the transmission. 

To establish the validity of this statement, we compare (5.42) with (2.27). As 
we can see for nD = 0 in (2.27) these formulas coincide except for phase shlfts 
nSZ,z/2, q(z) and v(t). Thus, the role of Doppler kequency is played by the modu- 
lation frequency. The phase shifts nCl,z/2, q(r), and v(z) are identical for signals 
of all channels, and therefore are subtracted in measuring the phase differences. 

However, comparing (5.42) with (2.27), we notice the following significant 
difference. Each spectral component of the converted signal in (2.27), for any 
modulation waveform, is formed by two signals: one in the positive frequency 
domain and the other in the "negative" domain but moved to the domain of posi- 
tive frequencies. The amplitudes of these signals are identical for sinusoidal and 
symmetrical sawtooth modulations [(3.8) and (3.30)], whde for asymmetrical 
sawtooth modulation they are different (3.20). But phase angles cp, = o , ~ o  and cpo 
have different signs. The .vector diagram for equal signal amplitudes is shown in 
Figure 5.23(a). We can see that for change of angles cp, = o,zo and cpo, the signal 
vectors rotate in different directions, but the phase of the total signal remains con- 
stant: only its amplitude varies. Hence, sine wave and symmetrical sawtooth 
modulation are unacceptable in this case. 

Figure 5.23 Vector diagrams for (a) sinusoidal and symrnetncal sawtooth modulation, and (b) sym- 
metrical sawtooth modulation. 
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The necessary phase relationships may be obtained with asymmetrical saw- 
tooth modulation. In this case the vector diagram is shown in Figure 5.23(b). Here 
the phase of the total vector is defined mainly by the vector with the greater ampli- 
tude, and phase of this vector is 

But yr = ( ~ r  -90 only for Afi = n, when the small vector is zero. 
The angle yr is easy to determine, using known formulas for the amplitude and 

a phase of the sum of two sine waves 

AIsincpl +4sincp2 
tan yr = 

4 cos (P, + A, cos (P, 

Assuming that 

s i n n ( ~ f  ~ + n )  " = n ( ~ f r + n )  
and 

we obtain 

Using this formula, we may determine the difference between the angles yr 
and (P, - (PO. The appropriate diagrams are given in Figure 5.24, where the ordinate 
is the angle Ayr = (P, - (PO - yr. The angle Ayr = 0 at nlAfi = 1, increasing for devia- 
tion from unity. This angle decreases with increased n because the ratio of the 
smaller vector to the larger decreases. For example, n1Afi = 0.66 when n = 1 and 
Aji = 1.5, and nlAfi = 0.95 when n = 10 and Afi = 10.5. 

Hence, for example, if the spectral component n 2 10 is chosen to avoid a 
parasitic amplitude modulation signal, then there are no special requirements for 
stability of frequency deviation. If it is necessary to maintain the frequency devia- 
tion at a constant level we may apply a very simple method (see Figure 5.25). A 
small auxiliary sinusoidal amplitude modulation (e.g., a few percent) is applied to 
the sawtooth modulating voltage. Because of the deviation modulation the selected 
spectral component also appears modulated in amplitude. The envelope phase for 
Afi > n differs by 180" from that for Afi < n, is detected by the amplitude detector, 
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Figure 5.24 Graphs of phase measuremenl error 

and applied to the phase detector. The output voltage of the phase detector is used 
to control the frequency deviation imd to maintain A h  F n. 

Thus, to realize thls method of converted signal processing, we must replace, 
in circuit Figure 5.22, unmodulated oscillators by FM oscillators with appropriate 
central frequency separations, and Doppler filters by filters tuned to the frequency 
of selected spectral components of the converted signal. In other respects the cir- 
cuit remains as shown. Realization of thls circuit is not difficult. The bulkiest part 
of h s  SRR is the microwave block, including the transmitter. It is simple to obtain 
a small number of FM signals wlth separated central frequencies and in-phase 
modulation, using a circuit similar- to Figure 4.16. We may make other technical 
choices, such as using a synthesizer as the transmitter exciter. 

This SRR will also work for moving targets, but can be significantly simpli- 
fied for measurement of range to f i e d  targets by omitting the simultaneous radia- 

smgnal 
generator 

Figure 5.25 Block diagram of the control deviation system. 
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tion of the several FM signals with different central frequencies, in the following 
way. During a particular time interval, a signal with central frequency a, is radi- 
ated, and the output of filter nR, is stored. During the next time interval, a signal 
with central frequency a, + 6 0 ,  is radiated, the filter output is again stored, and so 
on. The stored signals are recovered from memory and the appropriate phase dif- 
ferences between them are measured. 

It is obvious that the standard transceiver-antenna microwave block may be 
used in this case. The transmitter becomes simpler, as there is no need to radiate 
simultaneously several signals with different central frequencies. Application of a 
frequency synthesizer as the exciter permits very simple frequency switching and 
provides the necessary stability of these frequencies. The time interval during 
which the signal with one or another central frequency is radiated should be about 
100T,. This time will be sufficient to form the signal spectrum. 

It is not necessary to store all the filter output signals (i.e., the sinusoid with 
frequency nR,). It is enough to measure and remember the initial phase of this 
sinusoid. As its frequency is known, a measurement of an initial phase is sufiicient. 
It is obvious that the phase difference between two signals is equal to the differ- 
ence between their initial phases. Modem digital technology permits us to carry 
out all necessary calculations. 

5.5.2.2 Use of the Phase Angle o,z (41 

Presence of a phase angle o,z in the phase of each spectral component of the con- 
verted signal permits us to measure increments of ranges with errors measured in 
micrometers, a property that is certainly unique to FM SRR. For an illustration of 
this statement consider an elementary calculation. Assume that a continuous un- 
modulated signal with wavelength h is radiated toward a target. Then a reflected 
signal phase shift of 360" is produced by a range change of U 2 .  If, for example, 
h = 7.2 mm, then a 10-pm change produces lo of phase shift. 

Methods of phase difference measurement on continuous unmodulated signals 
in centimeter and millimeter bands are well known, but they are so difficult that 
they have not seen practical application. In FM SRR, the phase shift dormation 
as the angle a,z is contained in any component of the converted signal spectrum. 
Thus, there is an opportunity to measure the phase dzfference between transmitted 
and received microwave signals using a low-frequency signal: the modulation 
frequency. Thls permits us to simplify considerably the actual phase meter and to 
increase the measurement accuracy. 

The SRR being considered uses the standard single-antenna transceiver ap- 
proach, for which the converted signal spectrum processing system follows the 
block diagram of Figure 5.26. 

The reference signal for the phase detector is derived from the modulating 
signal. The phase shifter in the reference signal circuit cancels the angles cpo and 
nRmz/2, and shifts the phase detector characteristic working point to its linear re- 
gion. The number of selected spectral components depends on target range, the 
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From 4-H Narrowband 1 
modulator filter nflm shifter 

Figure 5.26 Block diagram of the phase processing system. 

Phase 
detector 

6 

From 
mixer 

size of the parasitic amplitude modulation, and the frequency deviation of the 
transmission. 

The main thing to which we must pay attention here is the modulation wave- 
form of the transmission. Sinusoidlal modulation and symmetrical sawtooth modu- 
lation are completely unacceptable, for reasons detailed in the previous section. 
Only asymmetrical sawtooth modulation is applicable. The adjustment of fie- 
quency deviation can be made to obtain Af7 = n, using the circuit Figure 5.25. It 
must be emphasized, however, that thls type of SRR is not applicable to measure- 
ment of moving targets at ranges of tens or hundreds meters. It can be used very 
effectively to measure small target motions at ranges from fractions of a meter to 
several meters. As an example of application of such an SRR, we will give a brief 
description of an instrument for measuring the vibration levels and steam pressures 
inside steam turbines [5]. 

The standard single-antenna ~ansceiver is used, but the propagation of elec- 
tromagnetic energy to the target {reflecting surface) and back is in a waveguide 
whose open end is placed 2 to 3 mm &om the vibrating element. This ensures a 
minimum illuminated area, whlch in turn, reduces measurement errors. Measure- 
ments of continuous vibrations of turbine components can be achleved during op- 
eration using a waveguide projecting into the turbine case. Heating the waveguide 
will not affect measurement, as thc radio unit is outside the turbine case. 

Measurement of steam pressure inside a turbine case is currently made by 
placing a metal membrane on the case. Pressure bends the membrane, and the 
amount of bending, proportional to pressure, is measured using a strain gauge. 
Strain gauges require cooling, anti it is impossible to measure pressure inside the 
turbine case in this way because the steam temperature reaches 500°C at pressures 
up to 200 atmospheres. 

The problem of pressure measurement is solved by using a radar measuring 
instrument in the following way. We insert a waveguide through the turbine case, 
terminating it with a horn covered by a membrane. Deformation of the center of 
the membrane is measured. Steam pressure measurement is possible at almost any 
location inside the turbine case by appropriate bending of the waveguide. 

Narrowband 
filter nQ, 
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5.5.2.3 Use of the Phase Angle n a d 2  

The method of range measurement using the phase angle nR,2/2 is based on the 
fact that this angle appears in the phase of all spectral components of the converted 
signal. Hence, we must extract the nth spectral component and apply it to the 
phase detector. As a reference signal for the phase detector we use the nth har- 
monic of the modulating signal. Then, at the output of the phase detector we obtain 
a voltage directly proportional to the target range. However, the use of phase angle 
nR,~l2 in ranging requires observance of several conditions: 

(1) We must cancel the angles RD~,  cp, and cpo; 
(2) We must ensure T, > 22, to obtain unambiguous readout of range; 
(3) The selected component of a converted signal spectrum must have no 

zero values in the interval of measured range. 

Let us consider possible ways of obtaining these conditions. A method of can- 
celing angles RDt, cp,, and cpo is known and applied in communication systems for 
restoration of the carrier in a balance-modulated AM signal. It is based on apply- 
ing the signal to a square-law multiplier (squarer), after which a bandpass filter 
extracts the usual AM signal with unity modulation factor. As is known, the spec- 
trum of a signal with balanced sine wave AM consists of two components 

If this signal is applied to the square-law multiplier whose output goes through 
a filter passing frequencies in the vicinity of 2wo, we obtain 

+ u2 cos 2w0t 

1 + - u2 cos (20,t + 2R,t + 2cp) 
2 

As we can see, there are no angles 2Rm2 and cp in the phase of the second term in 
(5.48). Hence, to cancel angles aDt, cp,, and cpo, we must use a modulation such 
that the converted signal spectrum consists of pairs of the components with identi- 
cal amplitudes and phase angles RDt, cp,, and cpo, but having opposite signs. The 
spectra of converted signals with sinusoidal or symmetrical sawtooth modulation 
have such properties (see Sections 3.1 and 3.3.2). 

As follows fiom (3.8) and (3.30), we may represent any pair of components of 
the converted signal spectrum as 
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If this pair is applied to a square-law multiplier, the output of a bandpass filter will 
be 

f u,' cos (2nR,r - nR,r) 

The resulting filter output is an AM signal with modulation frequency 2& 
and unity modulation factor. From thls it is clear that the filter must reject spectral 
sidelobes in order to obtain a signal, represented by the second term in (5.50), that 
is free of angles Q,t, cp,, and cpo. Otherwise, the signal at the phase detector output 
will be modulated in amplitude, and measurement of phase difference becomes 
impossible. We notice that it is best to use the phase detector - lowpass filter sys- 
tem to obtain the signal Cl: cos(2~Q,t - nC2,r). A block diagram of the appropri- 
ate processing system is shown in Figure 5.27. 

From ths analysis, it also folllows that the method is applicable only to mov- 
ing targets. If QD = 0 and cp, + qn, = +n, the signal at the phase detector input is 
zero. Additionally, the last equality repeats with changes of target range by multi- 
ples of half the transmitted wavelrngth. 

In the absence of target motion, the Doppler effect can be simulated by use of 
dual modulation (see Sections 3.2 and 4.5.2), sinusoidal modulation being the 
most convenient. 

-d 
filter 2110. 

t 

Figure 5.27 Block diagram of second type of phase processing system 
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Part I1 





Chapter 6 
Analysis of Constant Frequency Oscillators 

The signals used in radio systems are usually sinusoidal: 

and the transmitted information is contained in modulation of the amplitude U, the 
radian frequency o, or the phase cp. In most cases (even with pulse modulation), 
amplitude, frequency, and phase vary slowly during the period of the carrier: 

1 dlu --- <<I, - dq << 1 
u d o t  d o t  

On the basis of these assumptions initially formulated by Van der Pol [I],  it is 
possible to decrease the order of the initial differential equations by reducing them 
to so-called "abbreviated" equations for slowly varying amplitude and phase, to 
facilitate study. Using h s  approach, called the method of slowly varying ampli- 
tudes (SVA), it is possible to describe a wide variety of tasks in the theory of oscil- 
lations [2]. 

In formulating the abbreviated equations the researcher proceeds from the 
complete differential equations usually expressed in time or in operator form. The 
procedure for obtaining the abbreviated equations in the time form appears tedious 
and leads to the goal only for srmple systems (e.g., for second or third orders). 
Simplifications in the analysis can be achieved by use of the operator method, 
which allows us to formalize writing of the abbreviated equations. The method of 
symbolic abbreviated equations (SAE), developed by S. Evtianov, is based on h s  
idea, being one of most convenient from the engineering point of view [3]. It is 
especially attractive for systems of high order or for complex systems subject to 
external effects, such as autodynes for short-range radar systems. 
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Figure 6.1 Basic circuit of single-tuned oscillator. 

In this chapter a substantiation of the SAE method is first given, and elemen- 
tary examples of its application are carried out and then applied to cases of multi- 
ple-order oscillator systems based on complex active bandpass elements. 

6.1 RULE FOR OBTAINING THE ABBREVIATED EQUATIONS 

Let us consider the single-tuned oscillator with an inertialess active element, say, a 
bipolar transistor in the range of frequencies where it is possible to neglect its iner- 
tial properties (Figure 6.1). Neglecting the entrance current of the transistor, the 
differential equation of the oscillator connecting the time-varying values of the 
input voltage u(t), and collector current i(t), is possible to write in a symbolic 
form: 

Here y(j a )  = yn(j a)lkfb is the control admittance, 
y& a )  is the admittance of the selective system (load), 
kfb = -fi/b, is the complex feedback factor of the oscillator, and 
jo =d/dt is the symbolic operator of differentiation. 

Examples of single-tuned oscillator circuits are given in Figure 6.2. 
Equation (6.3) is correct for oscillators with inertialess two-pole active ele- 

ments (AE) as well (e.g., for tunnel diodes). In thls case for y( j  a) the adrmttance 

Circuit I Circuit 2 Circuit 3 C i iu i t  4 

Figure 6.2 Examples of single-tuned oscillators 
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between connection points of the rwo-pole AE (points a-b in Figure 6.2, Circuit 4) 
is understood. 

Let us consider as a concretc- example the circuit with transformer feedback 
(Figure 6.2, Circuit l), for which hy the usual rules of circuit theory we find: 

Having entered the natural resonmt frequency of the circuit w, = 1 / m, its at- 

tenuation 6 = woCR and the control resistance at a resonance R = MICR, we 
obtain: 

Considering jo/oo as the operator of differentiation p = dldr in dimensionless 
time r = mot, we will write on the basis of (6.3) and (6.4) the differential equations 
of the oscillator in operator form 

or in time form 

Before explaining the essence of the SAE method, we will obtain from (6.6) 
the abbreviated equations using the well-known Van der Pol method [I]. Thus we 
find a solution as: 

where U and cp are slowly varying functions of time, that is, 

The circuit attenuation 6 is assumed here to be small. 
The current i is represented by a Fourier series and we keep only the first 

harmonic component: 
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Let us differentiate (6.7) and (6.8) with respect to z and substitute the expressions 
for derivatives in (6.6). Equating the coefficients for sin(z + 9) and at cos(z + cp), 
we have: 

Neglecting the terms of order 62, we obtain the system of abbreviated equations 

Let us now carry out the following formal procedure. Consider expression 
(6.4) near to the resonant frequency (i.e., assume o = o o  + Ao, where A d o o  = 6 is 
a small frequency disturbance). Replacing o/oo in (6.4) with 1 + Ao/oo and keep- 
ing only the first-order terms, we obtain the approximate expression Y(jAm) de- 
scribing the behavior of admttance ybw) near the resonant frequency: 

Considering that abbreviated admittance (6.11) relates the complex amplitudes of 
a current I, = ~ ,e"  and voltage U = ~ e "  , and that the term jAoloo corresponds to 
the differentiation operator p = dldz, from 

it is possible to obtain directly the abbreviated operating equations. Actually, from 
(6.12) we have: 

Dividing the real and imaginary parts, we obtain the system of equations (6.9) and 
(6.10). 
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Thus, it is possible to formulate the following rule for drawing up the abbrevi- 
ated equations according to the S. Evtianov method: 

1) We enter complex slowly varying amplitudes of signals (complex enve- 
lopes) written using the resonant finequency oo; 

2) We enter a small frequency disturbance and simplify the expression for 
symbolic admittance (or impedance) in the vicinity of the resonant frequency; 

3) Replacing in the syrnboUic equation (6.12) for complex envelopes the 
small frequency disturbance jAolwo by the differentiation operator p  = d l d ~  and 
dividing the real and imaginary parts, we obtain the abbreviated equations in time 
form. 

Though this rule is formulated here on a basis of a rather simple example (a 
single-tuned oscillator with futed bias voltage), it can be applied as well to the 
analysis of more complex circu~ts. Let us show it first for autonomous non- 
modulated systems. 

6.2 SUBSTANTIATION OF THE SAE METHOD 

Let us consider the symbolic equation 

Y ( P )  u  = + )  

A feature of the selectivity systems commonly used is that in the denominator of 
the expression for admttance it is always possible to allocate a small parameter 6  
at least in the first degree: 

Having substituted (6.14) in (6.13 r ,  we obtain the symbolic equation of the oscilla- 
tor: 

Q ( P ~ )  = 6 P ( p , 6 )  +) (6.15) 

Free oscillations of a conservative system are described by the equation (6.15) at 
6 = 0 (i.e., by the equation Q(p,D)u = 0). By virtue of system conservatism the 
characteristic polynomial Q@,O) can have only imaginary conjugated roots, if the 
polynomial degree is even. If the degree is odd, a zero root is added to the imagi- 
nary roots, and the solution looks like: 
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where: o k  are the roots of the equation Q(jo,O) = 0 with 2n or 2n + 1 degrees; 
E, Uk, and ( ~ k  are arbitrary constants, dependent upon the initial condi- 

tions; and 
Ei,, is the initial bias voltage of the active element (amplifymg device). 

According to the SVA method we will find the solution of equation (6.15) as 
(6.16), assuming that arbitrary constants E, Uk, and ( ~ k  are slowly varying functions 
of time. Among natural frequencies ok, two or more can differ from each other by 
amounts near 6. It is possible to replace the sum of such components in (6.16), 
having chosen as the natural frequency oak = ok, by one component with a new 
amplitude and phase, still slowly varying. The total number of components in the 
sum in (6.16) will decrease and be equal to the number of nonoverlapped pass- 
bands of the selective system. The required solution will be of the form: 

Let us substitute (6.17) in the right part of (6.15) and expand as a Fourier series 
the current i[u(t)] as a fhction of time. Assuming that the fkequencies oak are not 
harmonically related, we will keep in the decomposition only the basic compo- 
nents with frequencies oak 

Here the components Ik are functions of a bias voltage E and of amplitudes Uk. 
The precondition about slowly changing E and Uk allows us in the spectral analy- 
sis to consider them constant during the period of oscillation. 

Having substituted (6.17) and (6.18) in (6.19, we obtain one equation for 
E(t): 

and I equations for amplitudes of the form: 

where Uk = UkeJR , I k  = Ikeiqk are complex amplitudes or complex envelopes of 

signals (k = 1,2, . . . 0. 
The system (6.19) is simplified in comparison with the complete equation 

(6.15) due to neglecting the combinative components of a spectrum. This is possi- 
ble because the linear part of the system has highly selective properties near the 
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resonant fiequencies. Let us notice that it is impossible to reduce (6.19b) by the 
exponential multiplier eJaDk' , as it stands under the differential operator. In order to 
cany it out, we apply the theorem of displacement for operational polynomials. 
Instead of (6.19b) we shall write: 

This result can be treated as the irrtroduction of the displaced operator, pl = - jook 
working on complex envelopes of signals, instead of the operator p working on 
instant values. Actually, equatio~a (6.19~) is obtained f?om (6.19b) after formal 
replacement p = p,  + joOk with the subsequent rejection of an index at the new 
displaced operator. 

The equations in the form (6.19a) and (6.19~) are convenient for the simpli- 
fied realization used in the SVA method. The slowness of change E(t) and U, ( t )  

means that derivatives of order n tiom E, Uk, and ( ~ k  are the sizes that have nth 
order of smallness 

Thls allows us to consider the operator p as having the order 6 and to formalize 
sorting the components in the order of their smallness. 

Let us consider the procedure of abbreviation in detail, using as an example 
one of the system equations (i.e., we will f~ an index k). The results obtained for 
k = 0 will apply to equation (6.121. 

Upon sorting the members according to their order of smallness we will take 
into account that Q(j wok+ p,6) and P ( jook+  p,6) are polynomials inp  and 6 (that 
is, they can be expanded in double Taylor series in p and 6 near the point (joOk,O) 
with the number of terms 

Having substituted these decompositions in equation (6.19b), we will write it as: 
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Here, the sizes calculated at p = jook and 6 = 0 are given in square brackets (i.e., 
for conservative systems). 

Let us now obtain from (6.22) the equations of thejrst  approximation. For 
this purpose it is necessary to equate on the left and on the right the terms of one 
(initially the first) order of smallness. If in this equation there appears an identity 
such as 0 = 0, it is then necessary to keep the terms of the second order of small- 
ness, and so forth. 

Let us take into account that the order of terms in the left part is equal to a to- 
tal degree pm6", and in the right to m + n + 1 because of the presence of the multi- 
plier 6 before the double sum. Keeping the components not hlgher than the first 
order of smallness, we obtain the required equation in symbolic form: 

Here [Q] = Q(jook,O). Let us remember that the basic frequency oak is generally 
near, but not equal to, ok, one of the resonant frequencies of the conservative sys- 
tem, and consequently Q(jw&) # 0. Let us consider at first the case of exact equal- 
ity of frequencies ook = ok, when [Q] = 0. 

In (6.23), as was mentioned, there can appear an identity such as 0 = 0, that 
is, 

that is characteristic for systems with two degrees of freedom, when the difference 
between the natural frequencies has the order 6. Such systems are, to a first ap- 
proximation, described by a symbolic abbreviated equation of the second order. 
To obtain it, we will leave in (6.22) members of the order tj2: 

This equation, in turn, for systems with three or more degrees of fkeedom and 
close resonant frequencies, appears as an identity. Thus all terms in square brack- 
ets in (6.25) are equal to zero. Continuing the process, it is possible to show that 
the order of the symbolic abbreviated equation is equal to the number of resonant 
frequencies lying in the appropriate passband of the selectivity system. Let us no- 
tice that the symbolical abbreviated equations can be written in a form similar to 
the complete equation: 
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Here, Y(p) IS the abbreviated admittance andp is the differential operator. 
So, for reception of the abbre1:iated equations it is enough to proceed from in- 

stantaneous values of voltages and currents to their complex envelopes and to find 
the expressions for symbolic admittance near the resonant frequencies. It is easy to 
do this by consideration of specific: auto-oscillatory systems. Moreover, the sirnpli- 
fied expressions for admittance arc: familiar to radio engineers and are widely used 
in practice. So, the symbolic simplified admittance in (6.23) corresponds to a sin- 
gle-tuned oscillatory circuit, and m (6.25) to double-tuned systems with closely 
spaced individual frequencies. 

Let us return to the complete system of the abbreviated equations. In accor- 
dance with (6.19), it consists of i -t 1 equations, where I is the number of non- 
overlapping passbands of the selective system. One more equation following from 
(6.19a) corresponds to slowly varying bias voltage: 

When we refer to (6.27) as about the abbreviated one, we mean that the operator p 
in it works on constant component? of a control voltage E and current I,,. The order 
of thls equation is defined by inednal properties of the automatic bias circuit and is 
equal to the number of roots of the equation Q(p,F) = 0, located within F of the 
origin of coordinates in the comp1c.x plane of roots. 

We study m a d y  single-frequency oscillations where it is assumed that the se- 
lective system has a single passband, or that the conditions for self-excitation at 
other frequencies are not present. Under these preconditions the oscillator is de- 
scribed by two abbreviated equations such as (6.23) for the complex envelope of 
high-frequency voltage and (6.27) for an automatic bias circuit (if it is present). 

6.3 EXAMPLES OF DERIVING THE ABBREVIATED EQUATIONS 

6.3.1 Single-Tuned Oscillator with Fixed Bias Voltage 

Let us consider an oscillator using, for example, a tunnel diode (Figure 6.2, Circuit 
4). The active element (diode) is considered as the noninertial device with a mono- 
tonic voltage-current characteristic i(u). Let us neglect the nonlinear property of 
thep-n junction, the inductance of the wire leads, and other parasitic parameters. 

The symbolic equation for the oscillator is in the form (6.13), where the ad- 
mittance between the anode and cathode of the diode is 

Neglecting the losses (considering r = 0), we find the resonant frequency of the 

oscillatory system: wo = &? . Having entered the attenuation of an oscillatory 
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circuit 6 = rl(o, L)  and the resonant resistance R = o, L/6 of the circuit, we shall 
write (6.28) as: 

According to the SAE method it is necessary to find the symbolic admittance 
Y ( j  oo + p) displaced in frequency. Replacing p in (6.29) with jwo + p and group- 
ing the terms according to their orders of smallness, we have 

Keeping only members of frrst-order smallness concerning small attenuation (we 
consider formally ploo 3 6), we obtain the expression for abbreviated admittance: 

where: Gss = 1/R is the resonant conductivity of the selective system, and 
T = 2/008 is its time constant. 

The substitution (6.32) in (6.26) gives the symbolical abbreviated equation in 
the complex form: 

( p ~ + i ) ~ = ~ ~ I  

Taking into account that U = UeJ' , II = I,eJ" , and replacing p with dldt, we 

have: 

After reduction by the multiplier e" and allocation of real and imaginary parts in 
(6.33), we obtain two equations in the time form: 

Similar equations apply for all single-tuned oscillators with noninertial AE. The 
formulas for the account of parameters oo, kfl, Rss, and R of Circuits 1-4 in Figure 
6.2 are given in Table 6.1. 
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Table 6.1 

Formulas for Calculation of Parameters of Single-Tuned Oscillators 

Circuit Number in Figure 6.2 
Parameter 

3 4 

The fust part of (6.34) descnbes the transient process of oscillation amplitude 
U, while the second part determines frequency of fluctuations o = oo + dqldt. As 
we see, in the case of noninertial AE dqldt = 0, the frequency (as a fust approxi- 
mation) is constant at o =- oo and does not depend on amplitude either in the tran- 
sient or steady-state mode. Such oscillators are called isochronous. Basically all 
oscillators are anisochronous; however, in a case of noninertial AE the frequency 
change is proportional to 6* and can be found from the abbreviated equations of 
the second approximation. 

The first part of (6.34a) assumes simple physical treatment, for which we will 
write it as: 

For an active element, the dependence of the fust harmonic of a current upon 
the amplitude of oscillations Il(UD is referred to as the oscillatory characteristic of 
an active element. The choice of an operating point on the voltage-current charac- 
teristic i(u) determines the type of the oscillatory characteristic [Figure 6.3(a, b)]. 
In Figure 6.3 the direct lines UIR, called feedback straight lines, are also shown. In 
accordance with (6.35), the difference between the oscillatory characteristic and 
feedback lines is proportional to derivative dUldt [Figure 6.3(c, d)]. The points of 
crossing of the oscillatory characteristic and feedback lines, in which dUldt = 0 
and, accordingly, the amplitude I 'is constant, determine the steady-state modes of 
the oscillator 

The function I , (U)  describes a high-frequency current delivered by the AE to an 
oscillatory circuit, and UIR is the hlgh-frequency current consumed by a circuit. 
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Figure 6 3  Operating points for different oscillator circuits. 

When the generated and consumed currents are equal there is a stationary mode of 
oscillations. If the generated current is more than consumed: Il(U) > UIR, 
dUldt > 0 (i.e., the amplitude of oscillations increases), while if Il(U) < UIR, 
dUldt < 0 and the amplitude falls. This permits judging the stability of the station- 
ary modes. 

From Figure 6.3(a) we can see that the oscillator has stationary modes at two 
points: U = 0 and U = Ul. The point of rest U = 0 is unstable. The amplitude of 
oscillations, since small values increase, approaches U,. Such a mode of oscilla- 
tion excitation is referred to as sofi. If under the influence of any of external or 
internal effect the amplitude exceeds U,, the derivative dUldt becomes less than 
zero and the amplitude will return to the value Ul. This means that the stationary 
mode of oscillations is stable. 

In Figure 6.3(b) (for an oscillatory characteristic of another type) there are 
three stationary mode points: U = 0, U = U,, and U = U2. The point of rest is lo- 
cally stable: if U < Ul, dUldt < 0 and in the course of time U + 0 (i.e., small in- 
crements around a point of rest fade and the operating point comes back to a point 
U = 0). If under influence of a large input (for example, a shock excitation), the 
amplitude U becomes more than Ul, the fluctuations will increase, approaching an 
amplitude U2. With further increase of amplitude (for any reason), the operating 
point returns to a point U2. Hence, the stationary mode at a point U= U2 appears 
locally stable. Such a mode of oscillation excitation is referred to as rigid. 

Let us write the conditions of local stability of stationary modes in analytical 
form. From Figure 6.3 we can see that the stationary modes are stable if dI,ldU < 
11R. Let us transform this expression for a stable point. Here U + 0 and I, = SU, 
where S is the slope of the voltage-current characteristic i(u) at the operating 
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point. Hence, dIlldU = S and the conditions of self-excitation of oscillations take 
the fonn 

For points of a stationary mode a ith final amplitude we will enter an average slope 
SI of the oscillatory characterisiic Il = S,(U)U. Calculating from thls derivative 
dIl1dU = S1 + UdSlldU and talung into account that in the stationary mode SI (U)  = 
1/R, we obtain for the condition o f  stability: 

The geometrical interpretation of conditions (6.37) and (6.38) is shown in Fig- 
ure 6.3(c, d). For monotonic dependence of S I ( U )  only one stationary point with 
nonzero amplitude [Figure 6.3(c) 8 exists that appears stable for soft self-excitation. 
For nonrnonotonic dependence of S,(U)  we have two stationary points with non- 
zero amplitude: the point with thc greater amplitude is locally stable, and that with 
smaller amplitude is locally unstable. No point of a stationary mode has global 
stability. The self-excitation here appears rigid. 

6.3.2 Single-Tuned Oscillator with Automatic Bias 

If automatic bias is used in the oscillator, the mode of an active element will be 
determined not only by the value ,of the oscillation amplitude, but also by the value 
of a bias voltage E at the operating point. The abbreviated equation for a slowly 
varying bias voltage should be added to the abbreviated equations for complex 
slope of the control voltage in ths  case. Consider that in the equations for the first 
approximation it is usually possible to neglect any reduction in the constant volt- 
age in the hgh-frequency circuit. Equating the voltage of an initial bias source 
E,,,,, to the sum of the voltage on the autobias circuit and the input of the AE, we 
obtain the symbolic abbreviated equation for a bias voltage E: 

Here: Io(E,U) is the constant component of current of an active element de- 
pendent both on amplitude and on bias voltage, and 

Yb,(p) is the admittance of the autobias circuit. 
For the usual RC circuits of autobias (Figure 6.2, Circuits 1 and 4) 
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where Tern = RernCem is the time constant of the autobias circuit. 
Recall that p is here the differentiation operator applied to constant compo- 

nents of signals E and I,,. Substituting (6.40) in (6.39) and replacingp with dldt we 
obtain the abbreviated equation for the autobias circuit in time form. Combining it 
with (6.34), we write the complete system of the abbreviated equations for an os- 
cillator with autobias circuit: 

The second equation, as before, concerns the isochronous feature of the oscillator 
(as a first approximation). For study of transients in the circuit it is necessary to 
solve the first and last parts of (6.41) simultaneously, as both parts include nonlin- 
ear hc t ions  (I, and Io) of E and U. 

Having put in (6.41) dUldt = 0 and dEldt =0, we obtain the system of the 
equations determining stationary modes of the oscillator: 

Notice that the approach using the oscillatory characteristics (effective in study of 
oscillators with fmed bias E = Eini, = const) cannot directly be used in thls case. 
For the solution of system (6.42), two approaches can be used. 

First, it is possible to calculate or measure experimentally the so-called dy- 
namic oscillatory characteristics - the dependence of Il(U) on bias voltage E, de- 
termined by (6.42b). The amplitude U is set, and (6.42b) yields the appropriate 
bias voltage, where the values of E and U define the first harmonic of current 
Il(E, U). Experimental values may be measured similarly. An active element (for 
example, diode in Circuit 4, Figure 6.2) may be considered together with an auto 
bias circuit (i.e., concerning points 1, 2). To these points, a variable voltage with 
slowly varying amplitude U is supplied and the first harmonic of the AE current is 
measured. If the amplitude U varies so slowly that at each value of U the station- 
ary value of auto bias voltage E has time to be established, the result of the ex- 
periment is the dynamic oscillatory characteristic I,(E, U). The points of its cross- 
ing a feedback line UIR define stationary modes of the oscillator. 

Such an approach allows us to judge correctly the transients and stability of 
stationary modes, provided that the processes in the auto bias circuit occur much 
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faster than in an oscillatory circuit (Tern << T). This is called the case of non- 
inertial autobias. 

Generally with comparable T,., and T it is expedient to use the approach of 
cutoff and bias diagrams. The dependence of U(E), following the first part of 
(6.42), is referred to as the cutoff diagram, and dependence of E(U), in the second 
part, as the bias diagram. 

Physically, the cutoff diagram determines the dependence of oscillation ampli- 
tude U on bias voltage E for fixed parameters of the high-frequency circuit of the 
oscillator (control resistance R, feedback factor, etc.). The bias diagram deter- 
mines a voltage E, established in !he autobias circuit of the oscillator for a given 
amplitude U and constant parameiers of the autobias circuit. The points of cross- 
ing of the cutoff and bias diagrams correspond to stationary modes of the oscilla- 
tor. 

Moreover, the plane (E, U) can be considered as the phase plane of an oscilla- 
tor with autobias circuit. The term "phase" does not imply that the phases of sig- 
nals are examined on a plane. The phase plane method was used for the first time 
in the theory of nonlinear fluctuatuons for consideration of the phase condition in 
mechanics, from whch the name was derived. On the phase plane each point cor- 
responds to specific values of oscillation amplitude and bias voltage, and move- 
ment on the phase plane correspands to the laws of change in time of these pa- 
rameters. The phase plane method (or the more general method of phase space) is 
very convenient for qualitative studies of nonlinear dynamic systems, to whch 
autodyne signal converters belong. 

Having solved equations (6.4 1 ) for the derivative and having divided the first 
equation by the second (i.e., ha~lng excluded time), we obtain the differential 
equation for phase trajectories: 

The application of the phase plane for study of transients in oscillators is discussed 
in detail in [3]. Here we consider two elementary cases: 

Notice that on the cutoff diagram the numerator of the fraction in (6.43) goes to 
zero (i.e., the cutoff diagram on a plane (E, U) is the isoclinal line of horizontal 
tangent (ILHT) to phase trajectories: dUldE = 0). On the contrary, in points of the 
bias diagram the denominator in (6 43) goes to zero, meaning that the bias diagram 
is the isoclinal line of vertical tangent (ILVT) to phase trajectories: dUldE -+ co. 

In the first case (Tern 4 0), in accordance with (6.43), dUldE -+ 0 at all points 
(E,U), except for the bias diagram. This means that for any point in the phase 
plane the corresponding point on the bias diagram moves horizontally (at constant 
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Figure 6.4 Phase portraits for (a) extra-low Tern and (b) extra-large Tern. 

amplitude U) and further in the bias diagram moves to a point of a stationary 
mode [Figure 6.4(a)]. The direction of movement in the bias diagram is deter- 
mined from the equation (6.4 la): dUldt > 0 "inside" the cutoff diagram and dUldt 
< 0 outside of it. From the phase portrait in Figure 6.4(a) we can see that the point 
of rest A is unstable, the fluctuations increase softly, and the stationary mode in a 
point B is stable. 

Another picture appears for significant inertiality of the bias circuit 
(TAT -+ oo). In this case, in accordance with (6.43), dUldE + oo at any point out- 
side of the cutoff diagram. Physically, it means that the processes in the oscillating 
circuit occur much faster than in the autobias circuit, and the representing point 
from any point on a plane (E,U) moves vertically in the cutoff diagram [Figure 
6.4(b)]. The movement in the cutoff diagram is determined by (6.41b) for an auto- 
bias circuit: dEldt < 0 for points laying more to the right of the bias diagram and, 
on the contrary, dEldt > 0 for points to the left of it. As a result both the point of 
rest A and the point of the stationary mode B appear unstable. From the point of 
rest, the representing point quickly passes to a point C on the cutoff diagram, and 
then slowly (at the rate of the time constant T,,) to a point D, where the tangent to 
the cutoff diagram is vertical. From here the point can move only to the left or 
downwards. The movement downward prevails (i.e., the amplitude U falls rapidly 
to zero at the rate of the time constant of a contour T). Further, condenser C,, is 
uncharged (voltage E grows) so long as conditions of self-excitation of oscillations 
are again executed. This occurs at point Al, the amplitude here increases up to 
value at the point C1, and then the process repeats. There is a limiting cycle 
AICIDK, appropriate to faltering generation. 

6.4 GENERAL ABBREVIATED AND CHARACTERISTIC 
EQUATIONS OF ANISOCHRONOUS OSCILLATORS 

Studies of low-frequency oscillators usually take into account only one nonlinear 
parameter of an active element - the slope of the output current averaged on the 
first harmonic, assuming that it is a real function. It is equivalent to the replace- 
ment of the active element by an inertialess one-port network. 
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It is unpossible in most cases to consider active elements of modem micro- 
wave diode oscillators used in autodyne SRRs as inertialess, and they should be 
frequently represented at high frequency by a unique but complex parameter. This 
complicates the study. It is evcn more difficult to study processes in high- 
frequency transistor oscillators. The basic feature of transistors as active elements 
of high-frequency oscillators is the need to represent them by two-port networks, 
all four characteristic parameters of which are nonlinear and complex. 

The purpose of this section is to derive general abbreviated and characteristic 
equations for high-frequency tranhtor oscillators. At the same time a unique re- 
striction can be applied to the inertia of an active element: the rather weak fie- 
quency dependence of its parameters withm the passband of the oscillatory system, 
though the delay time of a slgnal In an active element can be significant. The ma- 
jority of microwave ampliflmg devices satisfies these conditions, and therefore 
their general equations can be used for the analysis of single-frequency modes of 
oscillators using transistors, klyst~ ons, tunnel diodes, Gum and Reed diodes, and 
so forth. 

6.4.1 Abbreviated Equations of Anisochronous Oscillators 

The generalized so-called three-port circuit of the oscillator studied is given in 
Figure 6.5(a). For analys~s it can be reduced to the circuit with an ideal trans- 
former shown in Figure 6.5(b), which is more convenient for study. The active 
element in the circuit is represenred by a two-port network with common, input, 
and output electrodes. The circuit with an ideal transformer is characterized by the 
transformation factor kt, adrmttance of dispersion y,, and output adrmttance Yss of 
the oscillatory system. The relation between these parameters and the elements of 
the three-terminal circuit is determined by the following formulas: 

Figure 6.5 Generalized three-port oscillirtor circuits 
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Let us consider the circuit of the oscillator as a parallel connection of two 
two-port networks: active element (AE) and feedback circuit (FB) [the division is 
shown in Figure 6.5(b) by a dashed line]. Let us assume that due to the filtering 
properties of the FB circuit, the voltages in the circuit are close to sinusoidal. Hav- 
ing chosen as a reference the resonant frequencies of the oscillatory system oo or 
close to it, we write 

~ ( t )  = Re U e'"O1, u,, ( t )  = Re U,, e'"O' 

where U = ueH and U ,  = ~ , e ' ~  are the complex envelope of voltages. 

This assumption allows us to characterize the AE by the averaged first har- 
monic Y-parameters, which are generally complex and nonlinear: 

I , ,  = Y,, U+ Y;, U,$ , I,", = Y,, U+ Y,, Urn (6.44) 

Having entered currents I'jn and I',, flowing in an FB circuit, and having deter- 

mined the Y-parameters, we obtain: 

Combining equations (6.44) and (6.45) in pairs and taking into account that . . . . 
I;,, + I', = 0 and I,,, + I'ou, = 0 , we write in the symbolical form the system of ab- 
breviated equations determining the Influence of voltages U and U ,  on oscilla- 

'. 

tory system: 

Here: N = - .l 1 k, = U s /  U is a h c t i o n  opposite to the FB factor, 

Y(E, U) is the equivalent output admittance of the oscillator referred to 
points of connection of the oscillatory system, 
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Yss(p) is the abbreviated iudmittance of the oscillatory system at break on 
an AE input, and 

p = dldt is the differential operator applied to complex signal envelopes. 
In (6.46) it is shown that the nonlinear functions Nand Y depend on the arnpli- 

tude of the input voltage U and on the bias voltage E. This assumption is adequate 
for the so-called understressed mode [4], when the influence of the collector volt- 
age and the Y-parameters of the transistor on the first harmonic can be neglected. 

The system (6.46) describes processes in the fixed-bias oscillator (E = El,,, = 

const). These equations are complex, corresponding actually to four differential 
equations, the solution of which IS  quite difficult. However, for many practical 
oscillator circuits it is possible with the correct choice of common and input elec- 
trodes to make the transition from the practical circuit to one with an ideal trans- 
former whle achieving independence of function N from p. Then the two equa- 
tions following from (6.46a), become algebraic, simplifying the study. 

If we neglect the nonlinearity of input admittance Y, and adrmttance of return 
reaction Y12 of the active element (~.e . ,  consider kfb as constant), (6.46a) is reduced 
to trivial form and it can be ignored in the analysis. This case is equivalent to rep- 
resentation of the AE by an inertial one-port network. 

If automatic bias is used in the oscillator, (6.46) should be supplemented by 
the abbreviated equation for the irutobias circuit, which can be found from Fig- 
ure 6.6, where it is assumed that the autobias circuit as well as in the input elec- 
trode of AE are in the common electrode circuit: 

where: Ilno and IcornO are constant components of currents of mput and common 
electrodes, 

E,,,, is the voltage of the external bias source, and 
Y,,(p) and Ycorn(p) are symbolical admittances of the autobias circuits. 

Figure 6.6 Oscillator circuit with autobiar 
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In considering (6.49) as with the abbreviated one, it is necessary to interpret the 
abbreviation of admittance Yi,(p) and Yco,(p) near "zero" frequency (i.e., to con- 
siderp as the differential operator applied to constant components of signals). 

Equations (6.46) and (6.49) form a system of general abbreviated equations 
describing in the single-frequency approach processes in the anisochronous oscil- 
lator with a complicated oscillatory system and automatic bias circuits. 

6.4.2 Stationary Modes of the Oscillator 

To calculate the stationary modes of the oscillator, it is necessary in the abbrevi- 
ated equations (6.46) and (6.49) to putp =jh, where h = o -oo: 

Equation (6.50b) can be divided in two, having shared the real and imaginary 
parts: 

where G = ReY, B = ImY, Yre(h) = Re( jh), L ( h )  = Im( jh). From (6.52b), we can 
see that generally B ;t 0, and it is impossible to determine the change of oscillation 
frequency h irrespective of amplitude U and bias voltage E (anisochronity) that 
was possible in the analysis of oscillators using electronic lamps. For this reason, 
oscillators with inertial AE are called anisochronous. 

Four equations of a stationary mode (6.50a), (6.5 l), (6.52a), and (6.52b) de- 
termine four unknown parameters: U, E, h, and Uss. Note that (6.5 1) and (6.52) do 
not depend upon U,, and hence it is possible at fust from these equations to find 
U, E, and h, and then from (6.50a) to determine U,. Therefore, the stationary state 
of the oscillator is completely determined by a point in three-dimensional phase 
space U, E, and h, and (6.51), (6.52) establish surfaces crossed in points of a sta- 
tionary mode. 

Graphic methods are often applied for a solution to the equations. Let us as- 
sume at first that in the oscillator a fixed bias is used (E = Ei,,). Then it is neces- 
sary to solve simultaneously the equations (6.52) for E = const: 



Analysis of Constant Frequency Oscillators 145 

We see that even in this elementary case for the isochronous oscillator it is impos- 
sible to apply the approach of the oscillatory characteristics, as the right parts of 
the equations (6.53) depend on h. However, the system (6.53) can be solved by the 
method of hodographs. For this pwpose on a plane B, G we can plot the hodo- 
graphs of equivalent admittance of the oscillator using (6.19b) 

and of the oscillatory system Y,. The first, the hodograph of an active element, is 
derivable fiom the equation Y ( U )  = G ( U )  + jB(U), where the oscillation ampli- 
tude is considered as a parameter. The second hodograph can be plotted from the 
equation Y&) = Y&) + jYim(A) with parameter A. The points where the hodo- 
graphs cross define stationary values of amplitude and frequency. 

With automatic bias it is also possible to apply the method of hodographs, 
having modified it a little. The hodograph of the oscillatory system remains the 
same. The hodograph of the AE can be plotted in this way: we set the amplitude U 
from (6.5 l), find the appropriate ~ a l u e  of E, and at these values we define compo- 
nents G, B, belonging to the AE hudograph. By analogy to the dynamic oscillatory 
characteristics it is possible to call this hodograph the dynamic hodograph ofAE. 

6.4.3 General Characteristic Equation of the Anisochronous Oscillator 

The processes in oscillators are described by the nonlinear differential equations. 
In accordance with Liapunov, it is possible to determine the local stability of sta- 
tionary states based on the behavior of a linearized system. Let us proceed to 
drawing up the linearized equations, considering for simplicity the case of single 
autobias. 

First, note the following. The stationary-state equations determine the value of 
frequency change hi = o,,, - oo of oscillation frequency o,,, relative to reference 
frequency wo. Therefore, in a stationary state the phases cp and + are linear h c -  
tions of time: cp(t) = A,t + cp,, +(t) = hit + +it. Thus, before linearization of the ab- 
breviated equations it is also necessary to shift all operators by h = o,, - oo, 
whlch is equivalent to abbreviation of adrmttance Yss(p) concerning the frequency 
of stationary oscillations. In this case, abbreviated equations (6.46) will take the 
form: 

Together with (6.39) for the bias circuit these form the complete system of the 
abbreviated equations of the oscilllator. To find the equations of a stationary mode, 
it is necessary to put in this systemp = 0. 
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Let us apply small increments to values determining a stationary mode: 

U = U+ 5, E = E+ E ,  Uss = USS + q, and cp = cp +a, where the circle above desig- 

nates values of functions calculated at a stationary point. Let us now expand the 

functions Use", NU, YUsSe"P, in Taylor series in the vicinity of a stationary mode 

with small increments 5, E, q, and a. Neglecting terms of second and higher or- 

ders, we obtain: 

Substitution of these decompositions in the initial equations (6.54), (6.39) and 
exclusion of the equations for a stationary mode give the system of linearized 
equations: 

where n = (UIN)(dNIaU). 
The second equation is complex; therefore the system actually includes four 

linearized equations relative to four variations. To simplify the problem, we will 
exclude from the system a variation of the phase a. For this purpose we will divide 
in the equation (6.55b), to look like: Aq + B5 + CE + jDa = 0,  the real and imagi- 
w p m :  
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Multiply (6.56) by ReD, (6.57) by ImD, and combine the resulting equations: 

q Re( AD') + 5 Re(BD* ) + E Re(CDe ) = 0 (6.58) 

Hereafter, the symbol * designates the conjugate complex. 
Substituting in (6.58) the values of A, B, C, and D fiom (6.55b), we obtain in- 

stead of (6.57) and (6.58) a single linearized equation 

Let us note that it is impossible to reduce (6.59) using Y - Y,$ , as in this case I "  I 2  
the equation loses sense at p = 0, as Y - Y,, ( j h , )  = 0 , in accordance with 

(6.50b). 
Equations (6.55a), (6.59), and (6.55~) describe the behavior of the linearized 

system for small disturbances around the stationary mode. The operator p thus is 
considered as a parameter of exponential solutions. The condition of nontrivial 
solutions of system of linearized equations results in the general characteristic 
equation: 

Having expanded the determinant on elements of the first column and reduced 
first line by N, we will write the characteristic equation as: 

Here Yss = Y,(p + jh )  and all derivatives are calculated at the point of a stationary 
mode. 
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With combined emitter and base autobias circuits, the third line of the charac- 
teristic determinant becomes complicated and expression for it can be simply de- 
rived from (6.49). 

For oscillators with inertial one-port networks (Gum diodes, klystrons, Reed 
diodes) or for inertial two-port networks, the admittances YII and Yl2 of which do 
not depend on mode parameters, the characteristic equation turns out from (6.61) 
at n = 0 and dNldE = 0. If the AE is also inertialess (electronic lamp, transistor at 
low frequencies), the characteristic equation becomes even simpler - the complex 
nonlinear function Y(U) is replaced by the real G(U). 

The derivation of general abbreviated and characteristic equations is of inter- 
est from two points of view. First, the procedure of derivation of the equations for 
the specific circuits becomes much simpler, allowing us to concentrate attention 
directly on the analysis of systems. Second, it is possible to reveal some general 
properties of autooscillatory systems, which we will now describe. 

6.4.4 Condition of Self-Excitation of Oscillators with Inertial Active 
Elements 

To obtain the conditions of self-excitation of oscillators (i.e., to study stability of 
an initially stationary point, or point of rest), it is necessary in the characteristic 
equation (6.61) to put h = 0, U = 0, Uss = 0 and to take values of nonlinear func- 
tions in the point U = 0. Having done this, we will write the result as the product of 
two coefficients: 

The first coefficient characterizes the stability of a point establishing a constant 
current, and the second to excitation of oscillations with frequency o = oo. 

In transistor and lamp oscillators, the equation 

aImm0 / aE + Y,, (p) = 0 (6.63) 

as a rule, has roots with a negative real part, as usually a Icomol a E  > 0 , and 
Yc,(p) is the symbolical admittance of the passive circuit. The situation in diode 
oscillators is different. In this case, for excitation the working point of high- 
frequency oscillations on the volt-ampere characteristic of the AE always gets out 
on a site with negative resistance, so d I,,ol dE = di 1 du I"=,= -1 1 R- < 0. At the 
same time the worlung point should be stable for a constant current. For example, 
for the simple RC autobias circuit 
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where Tcom = Rco,Ccom the equation (6.63) takes the form: 

From thls it follows that the working point is stable with a constant current, if 
R,,, < R-, and is unstable if R,,, > R-. Both these cases are shown in Figure 6.7. In 
the second case (the straight line 2 in the figure) three steady-state regimes are 
present and the worlung point at a falling site of the characteristic i(u) is unstable, 
and the system, depending on the initial conditions, passes to one of two steady- 
state conditions with a constant cunent. However, here aildu > 0 and the opportu- 
nity to excite oscillations (at least, s.oftly) at high frequency vanishes. 

The stability of a point of rest to excitation of high-frequency fluctuations is 
determined by the following characteristic equation with order 2m,, where m, is 
the order of symbolical adrmttance Yss: 

As the polynomials with complex clonjugate factors have complex conjugate roots, 
the real parts of the roots of the equations Y(0) - Y,(p) = 0 and [Y(O) - Y ~ ~ ( ~ ) ] *  = 0 
coincide. Therefore, in the analysis of stability of a point of rest, it is possible to 
proceed from the characteristic equation (6.64) with the real factors, to the com- 
plex characteristic equation 

for which the order is less by two. It simplifies the analysis of self-excitation con- 
ditions of the concrete circuits. 

6.4.5 Order of the Characteristic Equation and the Sign of the Factor at 
the Upper Derivative 

For definition of the order of the characteristic equation we will open the charac- 
teristic determinant (6.611, being the algebraic multinomial of p. The senior 

Figure 6.7 Operating characteristic of the oscillator 
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member of the determinant is included in expression 

Recall that the order of symbolical admittance is equal to the maximal degree p of 
its numerator or denominator. For oscillatory systems such as a parallel contour 
forming quasi-sinusoidal signal of voltage, the degree of the numerator Yss(p) is 
greater than or equal to the degree of the denominator, and therefore the order of 
admittance is equal to the degree of the numerator. The same applies to symbolical 
admittances of autobias circuits. 

Let us designate through m, and mco, the orders of the oscillatory system 
and the autobias circuit. Then the order of the characteristic determinant (6.61) is 
equal to 2m, + m,,,. However, the order of the characteristic equation m is re- 

duced by one, as the free member of the characteristic determinant, which can be 

obtained from (6.61) at p = 0, is identically equal to zero, as Y-Y,(jh) = 0 in 
accordance with (6.50b). Thus, m = 2m, + m,, - 1. It is obvious that with com- 
bined autobias (where the autobias circuits are included in a common and an input 

circuit) the order of the characteristic equation will increase and will be equal to 

2m, + mcom + mi,, - 1. 
Let us consider how we can define the sign of factor a0 in the upper term of 

the characteristic equation. In accordance with (6.66), a. is equal to the product of 
the coefficient (1 + n) in the upper term of the product Yco,(p)lY,(p + jh)12. As 
Ycom(p) and Yss(p + jh )  are the admittances of the passive circuits, all factors of 
polynomials in the numerator and denominator of expressions for Ycom(p) and 
IYss(p + jh)12 are positive, and the sign of the factor a0 agrees with the sign of the 
efficient (1 + n). For stability factor a. to be positive (1 + n) > 0. This condition is 
a general condition of stability and is sometimes referred to as the condition of 
singular stability. The violation of it results in occurrence of special unstable 
modes such as stochastic relaxational automodulation of amplitude and frequency. 
Similar modes are characteristic for any dynamic system described by the abbrevi- 
ated equations, of which the factor in the upper derivative can pass through zero 
with change of parameters. 
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Chapter 7 

Analysis of FM Systems Using Symbolical 
Abbreviated Equations 
Modem short-range radars, includmg those with autodynes, use frequency modula- 
tion to increase the noise stability and reliability of operation, as has been noted in 
the previous chapters. The analysis of autodynes is complicated and strictly speak- 
ing we cannot apply the common radio engineering approach of symbolical abbre- 
viated equations. Nor do quasi-static methods produce desirable conclusions, as 
with the quasi-static approach we cannot investigate the dynamic properties of the 
system, where the autodyne signal represents a particular variation of the station- 
ary parameters. 

There is also the problem of extending the method of symbolical abbreviated 
equations to FM generators (i.e., to systems with variable parameters). Thls new 
problem has not been examined earlier but will be carried out in this chapter. 
Thus, the general equations of systems with constant parameters will be derived 
again, as in Chapter 6, but in a more complex form applicable when diverse con- 
trol signals (low-frequency, high-frequency asynchronous, high-frequency syn- 
chronous, control, stabilizing, etc.) operate on the autodyne. The method of sym- 
bolical abbreviated equations is then applied to FM autodynes. Examples of k s  
approach are given at the end of the chapter. 

7.1 SYMBOLICAL ABBREVIATED EQUATIONS FOR 
CONTROLLED SELF-OSCILLATORY SYSTEMS OF ANY KIND 

A large amount of scientific and technical research has been devoted to analysis of 
various self-oscillatory systems (SOS), beginning with the classic theory of oscilla- 
tions and extended in many modern studies. Especially in short-range radar, the 
constantly growing requirements for techca l  and operational characteristics of 
SOS operation, emergence of neu types of active microwave devices, new micro- 
wave circuit design, intensive development and expansion of SOS functionality, 
and development of new mode control facilities require consideration of qualita- 
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tively new and significantly more complicated problems, demanding moderniza- 
tion of existing methods and development of new analysis methods. 

The purpose of this chapter is the development of a general technique for 
analysis of the stationary modes and transients for autodyne SRRs with the various 
types of control signals that may be applied for diversified purposes. 

In developing a general approach to analysis of multielement SRRs using 
SOS, an important step is to develop a physical and mathematical model that de- 
scribes the phenomena encountered in such systems. The authors have studied the 
influence of signals of various types on the multipurpose SOS. Analysis of pub- 
lished models and the authors' operational experience have allowed them to de- 
velop a generalized model of the multielement SRR, one structure of which is 
shown in Figure 7.1. 

The complex active element (CAE) of the SOS is shown in Figure 7.1 as a 
multipart circuit. High-frequency CAE inputs and outputs designated tiom 1 to n 
are connected (generally through an element with delay rh,) to a selective system 
(SS) that provides necessary signal filtration, and also to the hlgh-frequency (HF) 

I oulputs Trzzerl 
of self-oscillating 

, - ----------  ------- 
Selfoscillating system 1 

1 
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I 
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v='= 2 inlout I 
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Figure 7.1 Structure of one cascade generalized model for a multielement short-range radar system. 



Analysis ofFM Systems FJsing Symbolical Abbreviated Equations 153 

output to the transceiver antenna. HF control signals from the appropriate inputs 
are applied to the HF inputs of the CAE and to the signal reflected into the antenna 
by the target. Low-frequency (LF) CAE inputs and outputs, marked 1 to m, con- 
nect to the low-frequency radar outputs. LF control signals (e.g., modulations, 
stabilization, control, etc.) are applied to the LF CAE inputs and to the SS. 

Additional feedback (AFB) c~rcuits that are often used to give specific proper- 
ties to the SOS are shown in Figure 7.1. The LF and HF signals generally may be 
inputs to these circuits, and outpur. signals of the AFB circuits may be applied both 
to LF and HF CAE inputs, through elements with delay ~ ( b .  The controlled power 
supply providing necessary voltages to the CAE and to separate SS elements (e.g., 
varicaps, varactors, or pin-diode:s) is controlled by LF control signals. Multi- 
element SRRs may use various configurations of the cascades shown in Figure 7.1, 
connected through HF and LF inputs and outputs or through space. 

As the CAE in the circuit we may use inertialess and inertial double-pole ac- 
tive elements, which include tunnel diodes, avalanche diodes, Gum diodes, nega- 
trons (artificially created elements with negative resistance or conductivity) and 
their combinations, two-port networks (bipolar and field-effect transistors, transis- 
tor-diode circuits), and also compound ampl~fling devices (amplifiers of various 
types, multiport microcircuits and microassemblies, and also complex combina- 
tions of active and passive elemeruts, including those using various physical princi- 
ples of operation). 

Oscillatory circuits in the system of Figure 7.1 may also be varied: concen- 
trated and distributed elements; operating in reflection or transmission modes (or 
combined); with constant or contrdled parameters; with selective circuit structures 
that generate the quasi-sinusoidaU@ of the necessary (input and output) voltages 
or currents (so-called Y, H, 2, and G-circuits [I]); with special structures providing 
the necessary functioning of multielement SRRs (e.g., for creation of the self- 
oscillatory autodyne phased antewwa array). 

The structure of the CAE curcuit also may vary depending on the task re- 
quired. It may be a system to mamtain constant oscillation amplitude, to maintain 
modulation characteristic lineari,ty for the fi-equency-controlled generator, or to 
stabilize the autodyne detector potential; a phase-locked loop (PLL) system for 
frequency trim or automatic adjustment of phase, a system forfrequency restora- 
tion on the received monopulse, cur a device for expansion of stability zones or the 
synchronism band of the SOS. 

The model presented is general enough to allow theoretical study of various 
SRRs that generate and process radio signals on the basis of self-oscillatory sys- 
tems. The main preconditions of the generalized SOS analysis are the following: 

The oscillatory system has a large Q-factor (for the chosen voltage or 
current), that allows using the method of slowly changing amplitudes; 
The inertial CAE: properr ies do not vary in the SS passband (i.e., the CAE 
does not contain w i t h  its structure any frequency-selective parts tuned 
near the operating frequency). 
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Figure 7.2 Self-oscillatory system on a three-input active element with an HF control circuit. 

These assumptions apply in the majority of practical cases. We will consider 
again the case in which the operating frequency is unmodulated and the SOS con- 
tains a three-input CAE (Figure 7.2) with an HF control circuit. The following 
circuit parameters are designated: the complex amplitudes of the fust harmonics of 
CAE voltages and currents, the current bearing the information from a reflected 
signal I,fl, and an external synchrosignal current I,,. The oscillatory system in the 
case studied is used in the transmission mode: it is included between output 2 and 
input 1 electrodes of the CAE and is characterized, as usual, by its coupling factor 
kT, the conductivity of dispersion yo, and the SS output conductivity Yss. For con- 
creteness we will consider that the oscillatory system provides a parallel reso- 
nance at the operating fiequency (i.e., it forms, from the nonsinusoidal output cur- 
rent i2, the sine wave voltages ul and u2). 

We can obtain ftom this diagram the following subsystems: (a) the usual 
autodyne circuit, synchronized by an external signal, by excluding fiom the circuit 
the HF control block and input 3 of the CAE; (b) the circuit of an independent 
(unsynchronized) autodyne, by setting I,,, = 0; or (c) the usual oscillator circuit, by 
setting I,, = 0 and I," = 0. 

Let us represent the CAE by a system of complex parameters averaged at the 
first harmonic, as in Chapter 6: 

where Yi,. are complex functions of amplitudes and phases of CAE input voltages. 
The SS and HF circuits are described by the following equations: 
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where Yzz, YZ3, Y33, and Y32 are parameters of the HF control circuit. Current 
sources 1," and I,,, are also referred to the oscillatory system and the HF control 
circuit. 

Excluding the currents from ( 7.1) and (7.2) and passing from complex ampli- 
tudes to amplitudes and phases of signals, we obtain three complex equations: 

where N I ,  N3 and Yare nonlinear complex functions of amplitudes and phases, R 
is the frequency difference of a synchrosignal, and Yss is a complex function of the 
differential operator p. If it is necessary to use an automatic bias circuit for main- 
tenance of the necessary mode cf the amplifying devices included in CAE, we 
must add to (7.3) the differential equation for an autobias circuit having the fol- 
lowing structure: 

where Yb,(p) is the symbolical admittance of the autobias circuit, E and Ehi, are the 
resulting and initial bias voltages, and Jo is the nonlinear direct current flowing 
through the active part Rbi of the dmittance. In the presence of autobias the hnc- 
tions Nl ,  N3, and Y in (7..3) will depend on the bias voltage E. The system (7.3), 
(7.4) forms the seven real nonlinear differential equations describing the processes 
in the self-oscillatory system to the analyzed. For p = 0 the general equations of 
SOS stationary modes follow from (7.3). 

Local stability of single-frequ'ency modes is determined by the general charac- 
teristic equation that may be obtained from (7.3) and (7.4) through linearization. 
We will omit these calculations as they are similar to those used in Chapter 6. So, 
for the synchronized generator v:ith an HF control circuit without autobias, the 
characteristic equation is of the form: 

where A is a characteristic determunant of the linearized equation system. 
On the basis of the described approach, we have obtained the general abbrevi- 

ated and characteristic equations for the nonisochronous autonomous oscillator [2] 
and the synchronized oscillator 131, and the general abbreviated and linearized 
equations for transistor autodynes [4] of various types (Y ,  H, Z, and G). Using 
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these equations, many concrete problems in the analysis, calculation, and design of 
various autodyne self-oscillatory systems for SRR can be solved. 

7.2 METHOD OF SYMBOLICAL ABBREVIATED EQUATIONS FOR 
FM SYSTEMS 

Let us proceed to construction of a mathematical model of the self-oscillatory sys- 
tem with time-varying parameters, for which the method of the symbolical abbre- 
viated equations cannot be directly used. The appeal of this method for radio engi- 
neers and science officers is obvious, as it allows them to use the classical ap- 
proach of nonlinear oscillation theory, operating with complex amplitudes familiar 
to the engineer. To extend the method of symbolical abbreviated equations to FM 
generators and autodynes, with the objective of simplifjmg the calculations and 
discussions, we will consider an equivalent circuit of FM self-oscillatory system, 
Figure 7.3, containing a negatron (a two-pole active network with a nonlinear 
characteristic i(u), where i and u are time signals of current and voltage). The 
symbolical conductivity Yss( j o , p )  of the oscillatory system depends not only upon 
the differential operator j o  but also upon a modulation parameter p (or set of pa- 
rameters) and has a polynomial form: 

The full differential equation of the FM generator will become 

Let us now perform truncation of (7.7) in general aspect. For this purpose we 
represent the required signals in a quasi-harmonic form: 

element 

Figure 7.3 Equivalent circuit of an FM self-oscillatory system on a two-pole negatron. 
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where U = U exp(j9) , I = I exp(l4) are complex amplitudes of signals and ass is 

the modulated circuit frequency. Mow (7.7) will become: 

Let us now expand (7.9) polynomials R and Q of the current frequency of or- 
der I and n in a Taylor series: 

Here it should be noted that factors of polynomial decomposition in series a, and 
P, may depend on the parameter p, depending on time according to the modula- 
tion type. It is also taken into acGount that, for the usual oscillatory systems pro- 
viding a parallel resonance near the working frequency, we may assume in the 
denominator of the symbolical polynomial Yss(jo,p) that the attenuation 6 is a 
smallparameter ofthe problem. Now we will rewrite (7.9) as: 

Here the operators j o  act only an those time functions that appear with them in 
square brackets. 

Equation (7.11) is a complex and difficult equation, but it is possible to cany 

out in it a reduction of the rapidly oscillating members exp j w,dt as they are ( S  ) 
already removed from under the operator p. Thls will simplify a problem, but will 
not result in the abbreviated equations because for truncation it is necessary to 
cany out the sorting of members according to their order of smallness, for the 
measure of which we will use the attenuation 6 of the oscillatory system. Consider- 
ing as usual that changes of amplitude and phase of oscillations during the period 
are small, as well as the rate of fiequency modulation, we will sort terms of (7.11) 
in order of smallness, having first expanded a, and P, in MacLaurin series in 6: 
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After sorting the terms of (7.11) in order of smallness and rejection of high- 
order terms, we obtain the required abbreviated differential equations of the frrst 
approximation: 

Recall that j o  is the differential operator that operates on slowly varying complex 
amplitudes of signals U and I (i.e., on their amplitudes U, I, and phases cp,$), as 

well as on the frequency difference A o  and factors au and Pu that vary with modu- 
lation frequency. Equation (7.12) is complex and therefore its real and imaginary 

parts can be divided into two real equations. Having added this system to the equa- 
tions connecting amplitude and phase of the first harmonic of current and voltage 

U (the connection being defined by the active element used in the generator), we 
will obtain two real equations describing the transients of amplitude U and phase cp 
of frequency-modulated oscillations. 

In case (7.12) transforms into an identity such as 0 = 0, h s  means that the 
equations of the first approximation do not describe the practical case and it is 
necessary to complicate the problem, by using equations including the second ap- 
proximation, whose members have the second order of smallness in attenuation 6. 
These equations follow fiom (7.1 l), taking into account terms of the second order, 
and take the form: 

+6 j o a , ,  U + 2 jAw joa, ,  U + 2 joo6 joa, ,  U + 3 joa, ,  U ( j o ~ o )  ( *I ( *I ( -1 ( *I 

Here also the differential operator j o  acts only on those slowly varying functions 
of time that are in the bracket with the operator. 

Thus, the algorithm for using h s  procedure to obtain the abbreviated SOS 
equations for systems with modulated parameters is the following. We write the 
expression for the symbolical admittance Yss of the oscillatory system, allocate the 
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polynomials of its numerator and denominator, and determine the order of small- 
ness of the terms. We then deternoine the expressions for the factors a,,,, sol, all, 
a 2 ~ ,  Poo, Plo and substitute them UP (7.12). Further substituting in (7.12), as we did 
for systems with constant parameters, expressions for the complex amplitudes of 
voltage and current, we perform differentiation and separation of the real and 
imaginary parts, writing the abbrcviated equations in the obvious form. If (7.12) 
then yields an identity (as., for example, in the case of a coupled-circuit oscillatory 
system with nearly equal individual frequencies), we must use equations of the 
second approximation (7. I 3) for analysis. 

The proposed approach to the analysis of the frequency-modulated self- 
oscillatory systems is expanded in, our works to more complex cases, when, in ad- 
dition to a low-frequency (modulating) influence on the oscillatory system, other 
types of influence [5] apply as we1 1. 

Let us consider some concrete examples of deriving the abbreviated equations 
for FM systems. 

7.3 DIFFERENTIAL EQU 4TIONS OF SOME FM SYSTEMS 

In this section we will obtain the lull and abbreviated differential equations of ele- 
mentary frequency-modulated systems. 

7.3.1 Differential Equations of a Parallel Conservative LC Circuit with 
Variable Capacitance and an Active Two-Pole 

The basic circuit of the system is shown in Figure 7.4(a). The nonlinear element is 
represented as a source of current i(u). Equating the sum of the currents flowing 
into unit "a" of the circuit, we obtain the integral-differentia1 equation: 

Figure 7.4 Basic conservative (a) and dicvpative (b) tuned circuits with variable capacity and an 
active two-pole. 
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where it is assumed that the capacitance C(t) depends upon a time for realization 
of frequency modulation. 

Differentiating (7.4) with respect to time 

We take the second derivative: 

d 2  d2u du dC d 2 c  (7 .16)  
- ( C u ) = -  c - + u  - = c - + 2 - - + u -  
dt2 ( 3  (31 dt2 d t d t  dt2 

di(u) - di , we ob- Substituting (7.16) in (7.15), and taking into account that - - -- 
dt du dt 

tain the full differential equation of the system: 

d2u 1 d 2 c  d i d u  
C ( t ) - + 2 - - +  -+- u - - - = O  

dt2 1 5  d t 2 )  d u d t  

If the frequency of the system is not modulated (i.e., c(t) = const), this equa- 
tion is reduced to the usual conservative equation of a tuned circuit with parallel 
nonlinearity i(t): 

d2u 1 d i d u  c - + - u - - - = o  
dt2 L dt dt 

Let us derive (7.17) by the symbolical method. We enter the symbolical conductiv- 
ity of the circuit 

Substituting (7.19) in the symbolical equation of the tuned circuit i = Ys&o)u, we 
obtain 
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Replacing j o  with the differential operator dldt, we obtain the required equation 

whlch accurately coincides with (7.17) if we take into account the necessity of 
differentiation of both fimctions of time: u(t) and C(t). 

7.3.2 Differential Equations a t  a Parallel Dissipative LC Circuit with 
Variable Capacitance and an Active Two-Pole 

T h s  basic circuit is shown in Figure 7.4(b). Operating as in the previous case, we 
find the full differential equation of the dissipative circuit with nonlinearity and 
FM: 

If the frequency is not modulated (i.e., C(t) = const), the equation is reduced to the 
usual dissipative equation of a circuit with parallel nonlinearity i(u): 

Let us derive (7.23) by the symbolical method. We enter symbolical conduc- 
tivity of the circuit 

1 1  R  + j o ~  + [( jo)2 LCR] 
Y, =---+-+ j o C =  (7.24) 

joL R  joLR 

Substituting (7.24) in the symbolical equation i = Ys&o)u, we obtain 

R + j m L + [ ( j w 2 ) L ~ ~ ]  
i(u) = - u (7.25) 

joLR 

Replacing here jw with the differential operator dldt yields the required equation: 
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In transformations it will again be necessary to take into account the differentiation 
of both functions of time u(t) and C(t). 

It is clear that the full differential equations derived in this section apply to 
cases of independent tuned circuits, when the external current i is zero, and to self- 
oscillatory systems in which the external current i is developed by an active ele- 
ment and compensates, in the mode of stationary oscillations, for the losses in the 
oscillatory circuit and the generator load. 

7.4 ABBREVIATED DIFFERENTIAL EQUATIONS OF SINGLE- 
TUNED OSCILLATORS WITH SINUSOIDAL FM 

We will consider a procedure for derivation of the abbreviated differential equa- 
tions of single-tuned oscillators. The basic circuit of such a generator at high fie- 
quency is shown in Figure 7.5. The active element is assumed for concreteness to 
be a bipolar transistor, which for simplicity is considered to be an inertialess de- 
vice with large input resistance at the operating frequency. Under the influence of 
control signal u(t) the transistor develops a current i(t) flowing into the tuned cir- 
cuit and compensating for the common losses. The control voltage u is coupled to 
the output uss through the feedback factor kfi = -uluss, determined by the circuit 
parameters. 

We will consider that o h c  losses of the circuit are concentrated in induct- 
ances L1 and L, and that they are proportional to those inductances: rllr = LJL. 
Sinusoidal modulation of fiequency described by 

is provided with modulation of circuit capacitance 

Figure 7.5 Basic circuit of the single-tuned transistor genelator controlled in frequency. 



Analysu of FM Systems Using Symbolical Abbreviated Equations 163 

Now we may write a system of full differential equations of the problem from 
whlch (7.22) follows. This equation of the second order is not especially complex 
and can be reduced directly to abbreviated equations. The procedure is quite tedi- 
ous for more complex oscillatoq systems and those with automatic bias, where 
execution of the direct truncaticn procedure without mistakes is very difficult. 
Therefore, we use the approach c?f simple derivation of the abbreviation equations 
developed in this chapter, and we will describe an example in detail. 

We write the symbolrcal admittance of the system, as shown in the example of 
Section 7.3.2, in the following form: 

Here, oo = l/LCo = const is the constant component of the oscillation fiequency 
around which the frequency is modulated according to (7.27), jo is the differential 
operator, and p = woL, is the charitcteristic impedance of the circuit. 

Now we determine the dec+>mposition factors in Taylor series in w for the 
numerator and denominator of the symbolical admittance Y,,(jw,p): 

In the case at hand only one factcllr a2 depends on time. 
We now express the decomposition factors of all coefficients in a Taylor se- 

ries in 6: 

1 - 22s cos Q,,r 
a,, = -- 

R p = o  p =- 
7 00 ' lo  "; 0 0  

Now we write the abbreviated equation for complex amplitudes: 
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Substituting Aw = o(t) - oo = ~o~cosR, t ,  we obtain: 

Now enter a circuit time constant T = 2/006 and rewrite (7.30) as: 

Substituting the expressions for complex amplitudes U = UeJ9 and I = leJ'+' 
(taking into account that the active element is inertialess), we obtain 

Differentiating, we obtain: 

1 - 2 ~ ~ 0 ~ n , t  . 
ueJ' + T  EU~" (-am sin a, t )  

2 
. (7.33) 

[-2&, sin Rmt]Ue~'+[I-2~ C O S ~ ~ ~ ] ( % J ~ +  
dt dt 

Dividing by the exponential factor yields 

Now separate the real and imaginary parts to obtain 
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These are the required abbreviated equations of the FM generator. In the absence 
of FM (i.e., for E = 0) these equations are reduced to those of Chapter 6. From 
(7.36) it follows that dqldt = 0 (I .e., the steady-state and transient frequency is 
exactly equal to the modulated frequency of the circuit). It is clear that, within the 
framework of thefirst approximation, the frequency with an inertialess active ele- 
ment does not depend on amplitude.. 

In considering these equations it can be noted that E is small, and it is possible 
to neglect the terms with E in comparison with 1 and terms with e2 in comparison 
with E .  Then (7.35) will become 

This is the equation that should be solved in considering parasitic amplitude 
modulation of the generator. 

It is possible to show that for all single-tuned FM oscillators the structure of 
the abbreviated equation for ampl~tude will resemble (7.37), but the factor in the 
term ~O,TsinQ,t will vary. For in circuit with transformer feedback it is -512, 
from (7.37). For a circuit with an inductive three-port, considered in Chapter 8, the 
factor is -312. For other single-tuned FM oscillator circuits (for example, for a 
capacitor three-port), this multiplier will have other values (see Chapter 8). 

7.5 PARASITIC AMPLITUDE MODULATION IN AUTODYNES FOR 
VARIOUS TYPES OF FREQUENCY MODULATION 

Let the oscillation frequency of the autodyne now be modulated under the any law 
using a variable capacitance: 

The capacitance for this purpose varies as C(t) = Co[l + PF(t)]. Let us find the 
connection between these relationships: 
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Considering small modulation factors P << 1, E << 1, then we find that 
1 - PF(t) c 1 + 2q(t), or 

Thus, if oscillation frequency is modulated according to (7.38), modulation of 
circuit capacitance has the form 

The symbolical adrmttance in this case will be obtained according to Sec- 
tion 7.4, but instead of the multiplier (1 - 2~cosR,t) in the numerator there will 
appear as the multiplier [ l  - 2q(t)]. As earlier, we will express decomposition 
factors in a Taylor series of the numerator and denominator of the symbolical ad- 
mittance: 

6 1 - 2 ~ y  ( t )  R a =1 a =- 
0 ' 1  9 a2 = 1 P o  = 0, PI = - 

("0 0," 0 0  

Expressing the decomposition coefficients of all factors in Taylor series in 6: 

1 
aOO =1, a,, =0, a,, =0, a,, =- 

6'0 

we obtain the abbreviated equation for complex amplitudes 

Substituting Am = o(t) - o O  = ~o,jy(t), we obtain 
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Substituting now the expressions for complex amplitudes U =Ue" and 

I = leJ' (here it is assumed that the active element is inertialess), and differentiat- 

ing, we find: 

Dividing by the exponential multiplier and dividing the real and imaginary parts, 
we have: 

These are also the required abbreviated equations of the FM generator for 
any type of frequency modulation. If the common case of small frequency devia- 
tion (i.e., E << I), (7.45) becomes: 

Thls is the equation that should be solved in considering parasitic amplitude 
modulation (PAM) of the generatca. As earlier, for all single-tuned FM oscillators 
the structure of the abbreviated equations for amplitude will be resemble (7.47), 
but the factor multiplying ~Tdy ld t  will vary: for a circuit with a transformer feed- 
back it is -512, and for the circuit with an inductive three-port it is -312. 

Let us determine now the PAV signal for common types of frequency modu- 
lation. Let the autodyne response with PAM be 
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where Uo is the amplitude of the HF voltage of the autodyne at its operating point 
(without PAM), qaAt) is the autodyne signal, and qP,&) is the PAM signal. We 
consider, as usual, that q p ~ ~  << UO, q,d << UO. If the problem is to determine the 
level of PAM signal in the absence of an autodyne response for different modula- 
tion types y(t), then at the usual PAM levels it is possible to make (7.47) a linear 
one, having substituted (7.48) in it instead of U for q d  = 0: 

We rewrite this equation as: 

and excluding from this the equation of the stationary mode, we obtain 

Neglecting the product q p d  as being of the second order, we have finally: 

where 

Equation (7.50) describes a PAM transient signal for a single-tuned autodyne 
with any type of frequency modulation, determined through (7.51). The common 
result of (7.50) has the form 
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7.5.1 Sine Wave Frequency Modulation 

In h s  case y(t) = cosR,t and 

Now fiom (7.52) we obtain 

5 
ypM (t) = -- L ~ ~ E R , ~ ~ " ~ ' ~ ~ " ~ '  sinR,tdt 

2 

and from (7.54) we obtain, integrating by parts: 

5 
ypM ( t )  = --U ER e-~''' 

2 0 m  
' Id"' sinRmtdt 

where C is a constant of integration. Entering tanY 1 = R,T we find 

5 
qpAM (t) = .; U ~ E  {CQSQ,~ - tan Y sinR,t) + Ce-'lT 

Thus, the PAM signal with sue  wave modulation consists of an exponential 
multiplier, describing a PAM signal transient, and a sine wave component with the 
modulation frequency (actually a PAM signal). The phase shift of the PAM signal 
is determined by the modulation fi equency and the normalized time constant of the 
circuit: Y I = arctan(R,T). The PAM amplitude is proportional to the amplitude of 
high-frequency oscillations and to the frequency modulation index, depending in a 
complex way on the autodyne. regime through the normalized derivative 
(udGss)(aGfav). 
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7.5.2 Binary Frequency Modulation 

The mathematical expression for binary frequency modulation is 

where: E = Ao/ofi, 
4 " sin(2k -1)R,t 

r(t) =-x 
nk= ,  2k-1 

9 

ofi is the frequency of free oscillations, 
A o  is the frequency deviation, 
am is the modulation frequency, and 
k is a whole positive number. 

Now the function @(t) in (7.5 1) becomes: 

Substituting this in (7.54), we obtain the expression for PAM signal amplitude 
with binary frequency modulation: 

10 cos[(2k -1)a,t - Y ~ ~ - ~ ]  
qpM (t) = ~ e - " ~ '  +-U,,EQ,TC (7.59) 

X 

where the phase y2k-l is found from tanY2&, = (2k - 1)amT. So again the PAM 
signal consists of the same exponential component and the enforced component 
whose amplitude can be found from (7.59). 

7.5.3 Frequency Modulation by an Asymmetrical Sawtooth 

The mathematical expression for asymmetrical sawtooth frequency modulation is 

2Ao (-yk+I . 
o = o f r + -  - sin kS2,t = of, [1+ q ( t ) ]  (7.60) 

x k=l 

2 " (-l)k" sin kQ,t 
where y(t) = - 

x k=1 k 
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Now the function @(t) in (7.5 1) be( omes: 

Substituting these expressions in (7.54), we obtain the expression for the ampli- 
tude of the PAM signal with this type of frequency modulation: 

where tanYk = MZ,T. 

7.5.4 Frequency Modulation with a Symmetrical Sawtooth 

The mathematical expression for s)mmetrical sawtooth frequency modulation is 

8 " (- l)k'' sin(2k - I )O,t 
where y ( t )  = - -- 

k = ~  (2k - 1)' 

Now function @(t) in (7.5 1) becomes: 

Substituting these expressions in (7.54), we obtain the expression for the ampli- 
tude of the PAM signal with this type of frequency modulation: 

where, as before, tany2k-l = (2k - )R,T 
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Chapter 8 

Output Voltage of a Frequency-Controlled 
Oscillator 

As a general rule, the amplitude of oscillator output varies with any frequency con- 
trol, be it tuning discretely in time (switchmg), continuous tuning (frequency wob- 
bling), or frequency modulation (FM). There are several reasons for dependence 
of oscillator amplitude on frequency in the steady-state mode of operation. It can 
occur because of change during tuning of the resonant resistance of the tuned cir- 
cuit, of the tuned circuit insertion coefficient in the output circuit of the active 
element, of the feedback factor, or of the transfer characteristic slope of the active 
element, together with immediate ~nfluence on amplitude of the change of a reluc- 
tance element parameter (a capacitor or an inductance, depending on whch fre- 
quency control element is used). By immediate influence we mean the influence on 
the oscillation amplitude of the change in the reluctance element parameter other 
than the variation of resonant resistance of a tuned circuit caused by this change, 
and also by possible variations in some oscillators of the insertion coefficient of 
the tuned circuit in the output circuit and by the feedback factor of the oscillator. 

The purpose of h s  chapter is to estimate the degree of output amplitude 
change for oscillators of different types, to define the influence of circuit parame- 
ters, and to establish the relation b~etween frequency and amplitude, allowing us to 
estimate amplitude change with fre..quency control. 

Steady-state regimes are considered separately for tuning discretely in time 
(the complete frequency range of the oscillator in th~s  case can be arbitrary), and 
for steady-state regimes with FM (frequency deviation in h s  case is much less, 
compared with the carrier fkequency, than is typical of frequency modulation). It is 
obvious that the results obtained during the investigation of the first case are valid 
as well for rather slow tiequency control that is continuous in time, as is typical for 
swept oscillators. 

To make clearer the physical reasons for the immediate lniluence of reluc- 
tance element parameter changes on the amplitude of output voltage, whch are 
typical for oscillators with rapid frequency control, the parasitic amplitude modu- 
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lation (PAM) accompanying FM in ideal (lossless) LC-tuned circuits is examined 
separately. 

8.1 CHANGE OF OUTPUT VOLTAGE FOR OSCILLATORS TUNED 
DISCRETELY IN TIME 

The oscillator designs that will be investigated can be reduced to the block dia- 
gram shown in Figure 8. l .  It contains, as usual, a tuned circuit, a nonlinear active 
element, and a positive feedback circuit. The oscillations appear in the tuned load, 
the active device gets energy fiom power supplies and converts it to energy of 
oscillations compensating for losses in the load, and the feedback circuit dnves the 
active device. In the case of oscillators using a single-tuned circuit, the subject of 
this chapter, the tuned load is usually an LC-tuned circuit. 

The oscillator output voltage is usually obtained fiom the tuned load or an 
element of it, and thus in the case of a real feedback factor k the voltage U, on the 
load is related to the amplitude of the driving voltage U, acting on the active de- 
vice driving input, by Uss = Ulk. As the feedback factor is assumed to be constant, 
the change of output voltage with tuning is equal to the change of amplitude U. 

For simplicity of initial discussions we will assume that the active device of 
the oscillator is inertialess. Then with a real feedback factor, according to (6.34), 
the amplitude of the driving voltage U is described by the following abbreviated 
equation: 

where T is the time constant of the tuned circuit, p = dldt is the differentiation op- 
erator, R is the so-called driving resistance, and I ,  is the amplitude of the first har- 
monic of the active device output current, which depends nonlinearly upon the 
amplitude U and the bias voltage E. 

The bias voltage E is usually supplied by an external bias voltage source Ein, 

Figure 8.1 Block diagram of an oscillator. 
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minus the voltage drop on an autobias resistor Rcom due to the constant current IcomO 
in the common electrode of' the actave device (base or emitter current of a bipolar 
transistor, drain current of a field-effect transistor) (Figure 8.2). The voltage E is 
given in thls case by the following abbreviated equation: 

where Tco, = RcomCCom is the time constant of the autobias circuit, and C,,, is the 
capacitance of the autobias circuit. 

In thls section we consider variable-frequency oscillators that are tuned dis- 
cretely in time. Thus, we are intercsted initially in steady-state regimes of opera- 
tion (i.e., modes) in which the oscillator has been tuned to one of its intended ke- 
quencies, after termination of the resulting transients. 

Under steady conditions the lalues of U and E are, by definition, constant, 
and consequently in (8.1) and (8.2) the left-hand parts are equal to zero. Hence, 
these equations become: 

Analysls of low-frequency osc~llators (i.e., those in which the inertial proper- 
ties of the active device can be neglected) often uses approximations to the static 
characteristics of currents by a piecewise-linear model. In this case, harmonic 
analysis of electrode currents (i.e., definition of harmonics of a base frequency in 
the current of each electrode) can be carried out quite easily and we obtain 

where S is the slope of the approximated characteristics of the output current, Scorn 

Figure 8.2 Equivalent scheme of a bias circuit 
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is that of the current whose constant component flows through resistor R,,,, y,(B) 
and yo(€)) are coeff~cients of decomposition of cosine impulses, and 8 is the cutoff 
angle of both currents (we consider that both approximated characteristics come 
from the same point of the abscissa and consequently the cutoff angles of both 
currents are identical). Substituting these expressions for currents I, and I,, in 
(8.3) and (8.4), we find: 

These equations allow us to estimate quantitatively the change of amplitude U 
with tuning of o. Then from (8.6) and the expression cos 8 = -(E - E1)IU, where 
Er is the cutoff voltage of active device currents, we have 

Having determined at the given frequency o the cutoff angle 8 using the expres- 
sion following from the equation (8.5) 

it is possible from (8.7) to calculate the amplitude U for any frequency in the tun- 
ing range of the oscillator. 

For interpretation of the results that will be obtained later, we normalize the 
amplitude U and frequency o to values UIg0 and also,  applicable to the cutoff an- 
gle 8 = 180'. From (8.7), it follows that 

and consequently 

From (8.8), we have 

and 
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where R(l) is the driving resistance of the oscillator at o = o l g o  and R(olols0) is 
that for arbitrary w. 

Let us consider expression (8. LO) for a specific oscillator, namely one with 
transformer feedback and a tuned circuit in the output circuit of the active device 
(Figure 8.3). Here and in subsequent discussion of other oscillator types we will 
assume, as is usually the case, that the loss resistance r of coils is much less than 
their reactance oL in the range of the oscillator tuning (i.e., r << oL), and that for 
all inductance coils the ratio rlL has the same value (strictly speakmg, r depends 
on fi-equency). For an oscillator with transformer feedback coupling (Figure 8.3), 
the coupling coefficient of the tuned circuit at the output of the active device is 
pk = LIIL, where L = L1 + Lz is the total inductance of the tuned circuit, the charac- 
teristic resistance of the tuned circuit is p = oL, and the resonant resistance of the 
tuned circuit is R,, = p : p ~ ( ~ )  = (1 . : l ~ ) ~ ( o ) o .  Here, Q(o) is the quality factor of 
the tuned circuit, generally dependent on o .  As the feedback factor for h s  oscilla- 
tor is k = MILI, then for the driving resistance of the oscillator we have R = kR,, = 

(MLllL)Q(o)o. From this and @.lo), we can write in the general case for the os- 
cillator with transformer feedback csoupling 

where Q(1) is the quality factor of the tuned circuit for o = also and Q(olo180) is 
that for an arbitrary value of o .  When the quality factor of the tuned circuit varies 
so little over the tuning range that it can be considered constant, (8.11) becomes 

Figure 8.3 Tunable oscillator with a translormer feedback circuit. 
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Figure 8.4 Main types of tunable oscillators using single-tuned circuits. 

In Figure 8.4 the RF circuits of several variants of tunable single-tuned oscil- 
lators are shown. The frequency controller is the variable element of the tuned 
circuit. Note that the oscillators implemented using the circuits of Figure 8.4(c) 
and 8.4(d) are not now practically applied. However, if there appear in the hture 
small-sized electrically controllable inductors capable of competing with varicaps, 
they will certainly be used. One feature of oscillators as shown in Figure 8.4(a) 
and (b) is that the normalized output voltage U, is proportional to the voltage act- 
ing only on a fmed capacitance [Figure 8.4(b)] or on a constant inductance coil of 
the tuned circuit [Figure 8.4(d)]. 

In Table 8.1 expressions are given for the coupling coefficient pk of the tuned 
circuit in an active device output circuit having a characteristic resistance p and 

Table 8.1 

Calculation Fonnulas for Key Parameters of Controlled Generators for Circuits in Figure 8.4 

Generator Figure Figure 8.4(b) Figure 8.4(c) Figure 8.4(d) 
Circuit 8.4(a) 
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resonant resistance R,, for the feedback factor k and for the oscillator driving re- 
sistance R for all oscillator circuits shown in Figure 8.4. The relevant expressions 
for ~ ~ ( € 9 ,  found on the basis of (8. la)), are also shown. 

Note that the expressions for for an oscillator with a transformer feed- 
back coupling (Figure 8.3) coincide with those for an inductive three-point [Fig- 
ure 8.4(a)]. This is because in both oscillators the frequency controller is the vari- 
able capacitor, and the coefficients pk and k do not depend on frequency. In gen- 
eral, any oscillator tuned by a variable capacitor with constant feedback factor, 
having frequency dependence of US active device output tuned circuit coupling 
coefficient similar to one of the osc illators shown in Figure 8.4, will have the same 
formula for the coefficient of expansion yl(B). 

In Figure 8.5(a-d) the normalued amplitude of the driving voltage U/UIso is 
plotted as a function of the normalized Gequency o/olso for oscillators imple- 
mented by the circuits of Figure 8.4(a-d), respectively. The calculations were made 
using (8.9) with expressions for ylfSB) as shown in Table 8.1; thus, it was assumed 
that the tuned circuit quality factors remained practically constant over the tuning 
range [i.e., Q(o/wlso) = Q(l)]. FrL>m these curves we can see that the change of 
normalized amplitude U/lilso with oscillator tuning is reduced as the product 
S,,,,$,,, increases. 

Figure 8.5 Dependence of normalized oscdlation amplitude on normalized frequency for different 
tunable oscillator circuits with different autobias parameters. 
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8.2 PARASITIC AMPLITUDE MODULATION OF OSCILLATIONS 
IN IDEAL SINGLETUNED CIRCUITS WITH MODULATION OF 
THEIR NATURAL FREQUENCIES 

In the previous section, the change of output voltage in different single-tuned os- 
cillators was explored for discrete control of frequency in time (frequency tuning) 
or slow continuous control of fiequency (frequency wobbling). For short-range 
radar the use of frequency modulated caniers is typical, and therefore the changes 
of output voltage in those oscillators will be fiuther explored, but for fiequency 
modulation (i.e., for the case in which the tuning can be rapid). In order to better 
understand the reason for additional amplitude change with rapid tuning, the volt- 
ages Uss in ideal tuned circuits (i.e., without losses) shown in Figure 8.6 are con- 
sidered, with modulation of their natural frequencies. 

The tuned circuits shown in Figure 8.6 correspond to those in Figure 8.4 un- 
der the assumption that all resistance losses r are equal to zero. Thus the voltage 
U, here is proportional to the output voltage of the corresponding oscillator in 
Figure 8.4. It is obvious that the relative change of amplitude for voltage U, will 
be identical to that previously derived. 

We assume that the natural angular frequency a,, = 1 I of the tuned cir- 
cuits varies with modulation according to expression 

a,, = a,, (1 + s cosR,t) (8.13) 

where L and C are the total inductance and capacitance of the tuned circuit, as& is 
frequency in the absence of FM, E is the peak frequency deviation, and am is the 
angular fiequency of modulation. We will assume that requirements typical for 
FM, e < 1, and Rm < aSo are observed. In ideal tuned circuits (Figure 8.6) with 
frequency modulation the amplitude of the output voltage will vary [i.e., there will 
be a parasitic amplitude modulation (PAM)]. It is possible to prove this by consid- 
ering the energy in such tuned circuits. We will show this for an example of the 
circuit in Figure 8.6(a). 

It is obvious that at frequency as& the energy in the tuned circuit can be ex- 
pressed as Wsd = CoU32, where Co is the circuit capacitance and Us& is the volt- 
age on it in the absence of FM. An increase of tuned circuit resonant frequency by 

Figure 8.6 Different types of ideal variable-frequency oscillators. 
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Amss = EO,O increases of the energ,y of the tuned circuit by AW,. The validity of 
this assertion is most obvious by considering that the variable capacitor C, being 
the modulator of frequency, reprerents a capacitor consisting of two plates, and 
that the variation of its capacitancc is carried out by the change of distance d be- 
tween the plates. Then, a frequencv increase by Am, = EO,~, requiring the reduc- 
tion of capacitance by AC = 2&Co, is obtained by increasing the distance between 
plates by Ad. It is obvious that some work A must be executed, corresponding to 
the increase of energy A W,;. This operation is linked with the necessity, in separat- 
ing the plates, of overcoming the attractive force effective between them. The total 
energy of the tuned circuit Wsd + A Wss can be expressed as 

where Co(l - 2 ~ )  is the capacitancc of the tuned circuit and Usso(l + m) is the volt- 
age on it, applicable at the greatest liequency a, = osd(l + E). Using 

it is easy to show that 

Similarly, considering the reduction of frequency by Am, = EO,~ ,  assuming then a 
voltage on capacitance equal to l ~s,o(l - m), we obtain again (8.14). Thus, the 
modulation of frequency of the tuned circuit shown in Figure 8.6(a) is fundamen- 
tally accompanied by PAM of the output voltage U,, and the coefficient of PAM 
is determined by (8.14). 

Unfortunately, it is diflicult to express completely the coefficient of PAM for 
all the tuned circuits shown in Figure 8.6 through the peak frequency deviation E 

by means of the energy approach. It is much easier to derive it through the differ- 
ential equations describing oscillatory processes occurring in tuned circuits. We 
will first consider tuned circuits in which a variable capacitor [Figure 8.6(a, b)] is 
used as the modulator. The differential equation describing behavior of a charge q, 
accumulated in capacitance C, appears as: 

Here again it is assumed that the angular frequency o, is described by (8.13). 
Then (recalling that E < I and R, < osd) an adequate solution of (8.15) corre- 
sponds to an FM oscillation [I]: 
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E 
q = Qo (1 - -cos S2,t) cos 

2 I 
where Qo is the average value of charge q. It is obvious that the capacitance in the 
circuit with change of frequency ass should vary according to (8.13) relative to the 
average value Co = l/(~o,:) by 

From (8.16) and (8.17), we obtain for a voltage Uss effective on the capaci- 
tance C [Figure 8.6(a)] 

E 
Q,, (1 - - cos n,t) 

uss = 
2 (8.18) 

Co (1 - 2& COS 0,t) 

After simple transformation and dropping terms of a higher order of smallness 
fiom (8.18), we get: 

where Us& = QdCo is the average value of Uss. 
When the voltage Uss acts only on a fvted capacitance C [Figure 8.6@)], we 

similarly obtain: 

We convert now to tuned circuits in whlch the modulator is a variable induc- 
tance [Figure 8.6(c, d)]. In thls case it is more convenient to approach the problem 
fiom the differential equation of oscillations of the magnetic flux aJ of the total 
inductance L: 

As (8.15) and (8.21) are similar in form, the approximate solution for magnetic 
flux aJ can be presented in a form similar to (8.16): 
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where cDo is the average value of flux cD. 
We determine the voltage acting on the inductance L [Figure 8.6(c)] using the 

relationsh~p U, = dWdt. Droppinp terms of a higher order of smallness in the re- 
sult of differentiation of (8 22), we obtain 

where Usso = Qoono. 
For a voltage acting on the constant inductance L [Figure 8.6(d)], we can 

write Us, = L(di1dt) - L[d(cDIL,)ldt], where i = WL, is the current flowing in the 
tuned circuit. As E < 1, using L,, = l/(Co,2) = l/[~o,,2(1 + s cos a, t)2] we find, 

for use of a variable inductance as the modulator, that the total inductance of the 
tuned circuit varies about the avel age value Lsd = l / ( ~ o , ~ ~ )  following an expres- 
sion similar to (8.17): 

Substituting now (8.23) in Us, = Ld(cDlL,)ldt, applyng one of the approximate 
equalities used above and again dropping from the result of differentiation terms 
of a higher order of smallness, we obtain 

Here, Usso = (LILSso)o,o@o8. 
From (8.19), (8.20), (8.23), and (8.25) it follows that in all the tuned circuits 

of Figure 8.6, with frequency modulation, a parasitic amplitude modulation of an 
output voltage is observed as well. Thus the comparison of (8.19), (8.20), (8.23) 
and (8.25) shows that the coefficient of PAM depends on the type of modulating 
element (variable capacitor or inductance), and depending on how the output volt- 
age is obtained can reach values fiom 1 .5s to 2.5s. The phase of the voltage enve- 
lope Us, relative to that of the frequency deviation can equal 0 or 180'. 

8.3 PARASITIC AMPLITUDE MODULATION OF OUTPUT 
VOLTAGE LN SINGLE-TUNED OSCILLATORS WITH 
FREQUENCY MODULATION 

Let us consider now the change of output voltage talung place for frequency 
modulation of actual single-tuned oscillators, the circuits of which are shown in 
Figure 8.4. As in the previous section, we will consider that FM is carried out by a 
sinusoidal change of a resonant frequency of the tuned circuits: 
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where E << 1, and R, << as&. Thus, for application of a variable capacitor [Fig- 
ure 8.4(a, b)] or a variable inductance [Figure 8.4(c, d)] as the modulator, the total 
capacitance or inductance of the tuned circuit should vary according to expres- 
sions C = Co(l - 2~ cos n,t) or L = Lo(l - 2~ cos R,t). 

To examine the dependence of amplitude on an oscillator that is tuned dis- 
cretely in time over a wide range, the abbreviated equation (6.34) was used. As 
shown in Chapter 7, it is impossible to use this in our case. The problem is that the 
Evtianov method, with which (8.1) was obtained, assumes that the reactance ele- 
ments of the load (a tuned circuit or coupled circuits in case of a multiple loop 
oscillator) are constant. Such an assumption allows us to obtain the abbreviated 
oscillator equations using the symbolical expression for complex impedance of the 
load Z(jo), representing the resistance of the load to a sinusoidal current with fie- 
quency o ,  in which jo is considered as the differentiation operator p. In our case, 
where the modulator is a variable capacitance or inductance in the tuned circuit, 
this is impossible. Besides, as it will be shown below, the transition from instanta- 
neous amplitudes of currents and voltages to their complex amplitudes, with vari- 
able tuned-circuit reactance elements, requires application of more complex for- 
mulas than in the usual application of the method of the symbolical abbreviated 
equations (Chapter 6). 

Thus, we must obtain new abbreviated equations (depending on whether the 
modulator uses a variable capacitor or inductance and on the method of extraction 
of the output), distinct fiom (8. l), that will allow us to examine the case specified 
in the beginning of this section. In principle it can be done on the basis of the gen- 
eral approach (Chapter 7), but we will approach it in detail by a direct approach 
for the oscillator considered, such as that using the inductive three-point [Figure 
8.4(a)]. Assuming an active device input current of zero, rllr2 = LIIL2 and letting q 
= CICo, we can write for the oscillator of Figure 8.4(a) the differential equation 
linking oscillator output voltage Uss to the output current i of the active device: 

where p = d/dt is the differentiation operator, 60 = r/(os&) is the attenuation of the 
tuned circuit in the absence of FM, Rss = p i ~ l ( r ~ o r l )  = RsJq is the resistance of 
the tuned circuit at its connection to the output of the active device, pk = LIIL; 
r= r l+ r2 , andL=LI+L2 .  
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Attenuation in tuned circuits u a small quantity. Under the assumed restric- 
tions (E << 1, Q << a,&), 0,0 and C are slowly varying functions of time, and 
therefore derivatives pq and p2q are also small. As in the expression of PAM it is 
sufficient to maintain in (8.27) only terms of the first order of smallness; we will 
neglect the terms including 60Pq,p2rl, tiO2, and 603 to obtain 

where the brackets <...> limit the activity of the functional operatorp inside them. 
Let us write the oscillator output voltage u, and the first harmonics il of the 

output current of the active device in the form: 

where Us.7, I, ,  and cp are slowly varying functions of time (because of the smallness 

of 60, E ,  and Q, lono). The abbreviation of the differential equations discussed in 
Chapter 6 assumes transition ffom instantaneous functions u, and i, to complex . . 
amplitudes U ,  , [ I .  It can be realized using (8.29), (8.30), and the following for- 
mulas, which can easily be obtained: 

Having substituted (8.29), (8.30) in (8.28), transitioning with (8.31) fkom in- 
stantaneous functions u, and i to complex amplitudes U,, and I t ,  and maintaining 
only terms of zero and first orders of smallness (because of slow change in I I  and 
o, derivatives with p, p2,  and p3 terms of first, second, and thud orders of small- 
ness respectively), we find: 
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Taking into account that ass = o,, I & ,  I,  = SIkUss, R = k&, 2/(os.&0) = To 
(where k is the feedback factor of the oscillator), we can write (8.32) in the form 

where S1 is the average slope of current I, R is the driving resistance, To is the time 
constant of the tuned circuit in the absence of FM, and M is a number which for 
the selected oscillator circuit is equal to 3. 

Just as (8.33) was found, the abbreviated equations were obtained for complex 
amplitude Us, for oscillators shown in Figure 8.4(b-d). All have the same form as 
(8.33) and differ only in the value of M, equal to - 1, 1, and 5, respectively. Having 

expressed in (8.33) complex amplitude U, through Us, and phase 9, we find 

Note fiom (8.29) that the oscillator frequency o = ass + dcpldt, and hence fiom 
(8.35) it follows that o = o,. Thus, the oscillator frequency is equal to the natural 
frequency of the tuned circuit and is determined by (8.26). 

Equations (8.34) and (8.35) were obtained under the assumption that tuned 
circuit loss resistances r do not depend on oscillator frequency o and are included 
in tuned circuits according to Figure 8.1. However, it is possible to show that these 
equations are valid as long as the attenuation f?om loss resistance and other tuned 
circuit elements is small. 

We will now express the resonant circuit resistance Rss, included in the driving 
resistance R = kR,, and present on the right side of (8.34), as: 

where mR is the modulation index of resistance R. For the oscillator using an in- 
ductive three-point [Figure 8.4(a)] R = Rdq = Ro(1 - 2~ COSR,~), and hence, 
mR = - 2 ~ .  Recall that the expression R = Rolq assumes resistance r independent of 
frequency o (i.e., of the variable capacitance C). It is easy to show that generally, 
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when the modulator is a variable capacitor, m, = -2c(CO I Ro XdR 1 dC) , and 
when it is a variable inductance, m, = -2c(LO / R,)(dR 1 dL) I,=, . 

The examination of PAM in FM oscillators with autobias requires the joint so- 
lution of (8.34) and abbreviated equations for the autobias circuit (Figure 8.2): 

dE 
T,,-=E -E-R corn I corn0 (8.37) 

dt I"" 

where E is the bias voltage, El,,, is the initial bias voltage, ICumo is the slowly vary- 
ing current flowing through the autobias circuit, R,,, and C,,, are the auto bias 
resistor and the capacitor shunting it. The current IComo can be expressed through 
the average slope SCumo: 

The assumed earlier sinusoidal type of modulation (8.26) allows neglecting 
the higher harmonics, to present expressions for output voltage U, and voltage E 
in the steady-stated mode of moduUation in the form: 

As slopes S,  and SComo are functiorrs of U, and E, on the basis of (8.39) and (8.40) 
it is possible to present them as: 

scorn = stom (Usso 7 Eo ) + 
ascorn ascorn el cosS2,t + -- e2 sin n,t + dE ] [ V2+- suss dE I 

where all partial derivatives of functions S ,  and S,,, with respect to U, and E are 

determined at U,  = Us$ and E = E (i.e., calculated at points of steady-state 
operation). 

Now there are all expressions for the joint solution of the equations (8.34) and 
(8.37). The solution is obtained by a usual method of harmonics balance. For this 
purpose we will substitute !8.36), (8.39), and (8.41) in (8.34) with 
q = 1 - ~ E C O S  n, t ,  and (8.38) - ( 8.40) and (8.42) in (8.37). Expressing the sepa- 
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rate equations with the appropriate signs, constant components, and coefficients of 
cos R,t and sinR,t, and neglecting the small terms, we obtain six equations 
whose joint solution allows us to find Use, Eo, Vl, V2, el, and e2. Thus 

F' + p2 
9 

(m, /E)F +MR,T,P 
F~ + p2 

where 

From (8.39) and (8.43) we can see that FM in the oscillators being studied is 
accompanied by PAM, the coefficient of which is 

The phase shift between the frequency deviation do = ~ o ~ ~ c o s R , t  and envelope 
V = VlcosR,t + V2sinR,t = mUsdcos(R,t + Y) can be defined using (8.43) and 

where Yo = 0 for Vl > 0 and Y = 180° for Vl < 0, with -3t12 < arctan(V2/Vl) < n12. 
Let us study the influence of autobias on parasitic AM in these oscillators, 

considering that they operate in the unsaturated regime. Let us calculate first the 
coefficient of parasitic AM at low modulation frequencies (a, - 0). Assuming in 
(8.44) that a, -, 0, we find: 
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The equations obtained from the fxed terms of (8.34) and (8.37) describe the 
cutoff and bias diagrams (Chapter 6) in the absence of FM and allow us to find 
expressions for the tangents to than: 

Substituting (8.47) and (8.48) in (X.46) we obtain 

Depending on the magnitude of .YRo the coefficient X is either positive-going or 
negative, whlle Xb is always negat.ive. In the case X > 0, both terms in the denomi- 
nator of (8.49) have the same sign, and in accordance with (8.48) the autobias re- 
duces the coefficient of parasitic AM, thus reducing m as R,,, increases. (We as- 
sume that Usso is maintained comtant by a corresponding change in EiniP) In the 
case where X < 0, the stable regime will be realized for Xb > X [2] (i.e., if in the 
denominator (8.49) the magnitude of the second term is greater than the first). 
Thus, coefficient m is alscl reduced with increasing Rb. 

Let us consider now the parasitic AM at modulation frequencies a,, which 
are significantly greater than 60 = l/(wsdTo). It is easy to conclude that 60 is equal 
to half the fractional bandwidth of the tuned circuit in the absence of FM. From 
(8.44) with R,/60 > 1 we have: .n = lWd2 (i.e., for rather high modulation fie- 
quencies the autobias does not atiect the coefficient of parasitic AM). Substituting 
in the expression m = Msl2 the applicable values of M for each of the oscillators 
in Figure 8.4, we find that for a,, So > 1 the parasitic stray AM coefficients appear 
to be the same as the those obtained above for FM in lossless tuned circuits (Fig- 
ure 8.6). 
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Confining the analysis for concreteness to oscillators with modulators repre- 
sented by a variable capacitor [Figure 8.4(a, b)], we will consider now the parasitic 
AM for all modulation frequencies. Using the accepted approximation to an output 
current i supplying automatic bias, we have: 

where S and Scorn are the slopes of the approximated current characteristics I and 
icorn, yl(0) and yo(@) are the decomposition coefficients of cosine impulses, and 0 is 
the cutoff angle. Having introduced coefficients yl(0) and yo(@), and using three 
terms of their expansion in a series for cos 0, we have: 

The calculations using these formulas give sufficiently precise values of 
slopes S1 and Scorno at angles 9 lying within the limits 40' to 140'. Applying the last 
expressions for slopes S1 and SCorno and the expression cos 0 = (E - E1)IkUSs, the 
derivatives of S1 and Scorno with respect to Uss and E can easily be obtained: 

Substituting (8.50) in (8.43) yields (8.46) as obtained before (note that the feed- 
back factor k, included in these formulas, is abbreviated), it is possible to obtain 
equations suitable for calculation of the coefficient m and the angle Y. 

In Figure 8.7 the dependence of the normalized coefficient of stray AM m l ~  
and phase angle Y on dimensionless frequency nrn/60 = R,To are introduced (cal- 
culated using the above equations) for oscillators using the inductive three-point 
[Figure 8.4(a), continuous lines] and the Klapp scheme [Figure 8.4(b), broken 
lines]. The curves correspond to SRo = 1.5 (small regeneration), SRo = 4.3 5 (large 
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regeneration), Sc,,Rco, = 0.04, 0.5 7 and 5.13 at SRO = 1.5, and ScoJ?c,, = 7.5 and 
23.7 at SRo = 4.35. 

The values of the ratio mRI& used in these calculations are found assuming that 
the circuit Q = oLlr is constant over the frequency range of oscillation. The curves 
calculated for Tb = To differ slightly from those shown in Figure 8.7, for which 
Tb = 0.1 To. The curves shown in Figure 8.7 allow us to revise the definitions of 
"low frequencies of modulation" and "high frequencies of modulation" used in the 
equations above. The former (i.e., the frequencies at which the parasitic AM coef- 
ficient is approximately derivable from the static modulation characteristic) should 
meet condition R, I 0. (for large values Sc,,,,Rc,, this condition is less rigid, 
and in the case of the inductive three-point and independence of circuit Q from 
frequency a,, the coefficient m IS independent of modulation frequency). The 
latter [i.e., the frequencies at which the parasitic AM coefficient is essentially in- 
dependent of the autobias (and S, ,,&,,) and are close to those based on FM in 
separate lossless tuned circuits] should meet the condition Q, 2 6 0 .  At modulation 
frequencies R, smaller than 60, as follows from Figure 8.7, the increase in product 
S,,,R,,, reduces m and Y and simultaneously aligns their values in the modulating 
frequency range. 

Figure 8.7 Dependence of normalized PAM factor (a, b) and phase shift Y (c, d) upon modulation 
frequency for the inductive three-poirrt scheme and Klapp scheme for small (a, c) and large (b, d) 
regeneration factors. 
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We attempt now to give an energy-based explanation of the results. As was al- 
ready noted in Section 8. l ,  compensation for energy losses in the output load of 
the oscillator (i.e., in its tuned system) is provided by input of energy from an ac- 
tive device in the load. Thus, in the case of a fvred frequency oscillator under 
steady-state conditions, the compensating energy arriving during each oscillation 
period and the energy lost during that period are made equal. Owing to the nonlin- 
ear properties of active devices and the dependence of load resistance (i.e., reso- 
nant circuit resonance resistance at points of co~ec t ion  to the active element) on 
the oscillation frequency, this equalizing of energy occurs at different oscillation 
amplitudes for different frequencies. Therefore, the voltage output of the oscillator 
depends on frequency. 

For FM with low modulation frequencies (R, I 0. there is enough time 
for the oscillator amplitude to be adjusted, by equalizing of the energies lost and 
gained, at each of the frequencies over which the oscillator sweeps. This means 
that the oscillation amplitude at each frequency during the modulation cycle is 
close to that of the oscillator under fvred frequency (without FM), steady-state 
conditions for that frequency. However, with increase in modulation frequency the 
oscillation amplitude is increasingly influenced by the following two factors: the 
bandwidth of the tuned circuit and the effect on tuned circuit energy of modulator 
reactance. Considering FM oscillations in an ideal single-tuned circuit, it has been 
established that these variations result in an increase in energy in the tuned circuit 
during one half-cycle of modulation followed by a decrease during the succeeding 
half-cycle. The minor effect of the second factor for low frequencies of modulation 
(R, < 0. la0), as compared to the case of FM in an ideal single-tuned circuit where 
it occurs irrespective of the modulation frequency, is caused by tuned circuit losses 
and their link to the active device. For high frequencies of modulation (R, >> 60), 
the influence of both factors is so significant that oscillation amplitude is com- 
pletely determined by them. Thus, because of tuned circuit inertia, the equalization 
of energy supplied by the active device and that lost in the tuned circuit is con- 
trolled only by the energy within the modulation period rather than that in the os- 
cillation period. If the changes in modulator reactance did not result in variations 
of tuned circuit energy, oscillation amplitude would remain constant, but as these 
changes do occur the amplitude is also affected. For high frequencies of modula- 
tion (R, >> zO), the changes in modulator reactance causing alternating addition 
and withdrawal of energy in the tuned circuit are so rapid that the tuned circuit 
inertia precludes influence on circuit power losses and their compensation. This 
allows us to consider single-tuned FM oscillators (Figure 8.4) at high modulation 
frequencies to be ideal single-tuned circuits (Figure 8.6). It also shows that the 
parasitic AM coefficients for the oscillators analyzed in this paragraph, for 
R, >> 60, are the same as those derived earlier by consideration of FM tuned cir- 
cuits assumed to be ideal. 

As the tuned circuit inertia and effect of modulator reactance on oscillation 
frequency (i.e., on parasitic AM coefficient) have no effect in the case of FM with 
low modulation frequencies (R, < O.& ), the influence on amplitude will be 



Output Voltage o fa  Frequency-Controlled Oscillator 193 

minor also in cases of large, slow continuous tuning, although the relationship be- 
tween variations of amplitude and generated frequency will now certamly be dif- 
ferent because of nonlinear properties of the active device and frequency depend- 
ence of resonance resistance of the tuned circuit. With reference to continuous 
periodic tuning (as, for example, in swept oscillators), the last assertion can be 
rendered more concrete. If the oscillator is swept at frequency F and if the har- 
monics up to n are essential to system operation, this assertion can be considered 
valid for F < 0. 160/(2xn). From thls it follows that for F < 0. 160/(2~cn), the varia- 
tion of oscillator amplitude as considered in thls chapter can be calculated using 
expressions obtained in Section 8.1 . 

8.4 USE OF A VARICAP A S  THE FREQUENCY CONTROLLER 

Varicaps are often applied as frequency controllers (tuning elements, FM modula- 
tors) in modem oscillators. The dependence of oscillator amplitude on frequency 
for discrete tuning in time, and also for slow continuous tuning (propositions made 
in the closing part of the Section 8.3 are valid here) can again be obtained using 
(8.7) and (8.8), valid for oscillators operating at fmed frequency and in the steady- 
state regime. 

When the modulation frequencies cannot be considered low, we must apply 
the differential equations describing FM oscillator processes in order to find the 
dependence of parasitic AM coefficient on frequency deviation, as was done in the 
previous section. When using varicap modulators there will be additional terms in 
these equations, as compared to those considered earlier, because the capacitance 
of the varicap depends not only on the modulating voltage but also on the RF volt- 
age imposed on the varicap by the. oscillator. For study of parasitic AM using the 
approximation set forth in this chapter, these terms can practically be neglected, 
and the results can be applied alsta to oscillators with frequency modulators using 
varicaps. 

However, in a series of publications [ l ,  31, in whlch FM oscillators using 
varicap modulators were investigated, results differing from those above were ob- 
tained. This is explained by the fact that in many publications the differential equa- 
tions were solved with some inacc uracy. We describe below the nature of this in- 
accuracy. 

Formulating the differential equations for FM oscillators with varicap modula- 
tors, we must use the expression for the high frequency component of current 
flowing through the varicap. Let us write thls expression, proceeding from the 
known formula for differential capacitance of a single varicap: 
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where e is the external voltage applied to the varicap, C m  is the capacitance of the 
vaxicap at e = 0,  cp, is the contact potential difference, and n = 2 or 3 for a sharp or 
smoothly varyingp-n junction, respectively. 

Because, by definition, the current i, as a h c t i o n  variation of the charge q, is 
equal to dqldt, and the capacitance Cde) = dq(e)ldt, the current flowing through 
the varicap is: 

From (8.51) it follows that if constant bias E and a high frequency component u 
are applied to the varicap (i.e., if e = E + u), then 

where Cv(e) = Cm(e)[cpJ(cpc + E + u)]". If, in addition to voltages E and u, the 
modulating component em is applied to the varicap (i.e., if e = E + u+ em) from 
(8.5 1) follows: 

As the high frequency voltage u appears in the expression for Cde),  the first term 
of the right part of (8.53) must be taken into account in determining the high fre- 
quency component of oscillator modulation current. However, in many published 
articles this was not done: instead the high frequency component of current flow- 
ing through the varicap was determined by (8.52) with C, (e) = C, ( E  + em + u). 

In [3], the FM oscillators were studied for a modulator based on back-to-back 
varicaps with sharp p-n junctions. It was assumed there that the equivalent capaci- 
tance of both varicaps is defined by: 

where C V ~ O  = CVDICKIZI(CPQI + Cm2), 

N =  I(Cm + Cm2Y (Cm - Cm2)1, and 

CYol and Cm2 are the capacitances of the varicaps with no voltages on 
them. 
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But as follows from [2], (8.54) c m o t  be used generally when N # 1. It is valid 
only for one special case I(N = 1). namely, when the modulator is a single varicap 
and Cml +to or Cm2 -+ co and C'veq = Cn(CveO = Cm2) or Cveq = CYI(CveO = Cml), 
respectively. Thus, as in the earlier case, the capacitances Cvl and Cn are differen- 
tial capacitances defined as CV = Jq(e)lde, where e = E + em + u. Results obtained 
in [3] as well as in [l]  are incorrect for this special case because the high fre- 
quency current flowing through the varicap is also determined by (8.52), if it is 
assumed that Cy = CV(E -t em + M )  (i.e., the component, conditioned by the first 
term in (8.53), is also left out). 

In summary, as indicated abcve, we study free oscillations in an ideal single- 
tuned circuit with a varicap (Figwe 8.8) with modulation of varicap capacitance 
and thereby the frequency of resonant oscillations. Thus we will consider for con- 
creteness that the varicap has a shiirpp-n junction. 

It appears that for our tuned carcuit the following differential equation applies: 

where i is the high frequency currcmt flowing in the tuned circuit, and consequently 
through the varicap, and u is the h lgh frequency voltage applied to the varicap. For 
a solution to (8.55), we shall substitute into it the expression for the current of the 
varicap (8.53) 

i = Cc (e) 4 %  +u) 
dt 

where Cde) = Cm[cp, /(cp, + E + I., + u)]'12. The fact that (8.56) also includes the 
low frequency component of the current imposed by the modulating voltage em 
applied to the varicap is not a hmliirance to the study, as the method of solution of 
(8.55) selected below (the method of harmonic balance) will subsequently allow us 
to take into account only those ccmponents that are interestmg. So, having substi- 
tuted (8.56) in (8.55), performed transformations, and entered a series of identifi- 
cations, the following equation can be obtained: 

Figure 8.8 Ideal tuned circuit w ~ t h  vancap 
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where: x = ul(cpc + E) is the dimensionless high frequency voltage on the varicap, 
y = eml(cpc + E) is the dimensionless modulating voltage, 
o: = lI[LC,O], and 
CdE) = Cdcp, + E). 

It appears that oo is the angular frequency of resonant oscillations in the tuned 
circuit for x + 0 and y = 0. 

Multiplying all terms of (8.57) by 2(1 + x + y)3" and transferring from the de- 
rivatives d(x + y)ldt and d2(x + y)ldt2 to derivatives d(x + y)ldz and d2(x + y ) l d ~ ~ ,  
where z = oot is dimensionless time, we change (8.57) to a more suitable form for 
further solution: 

For solution of (8.58) we will be confined to the case x 5 0.6 and y << 1. The first 
of these inequalities is usually met in oscillators where frequency is controlled by a 
varicap, and the second corresponds to the case of small frequency deviations usu- 
ally characterizing FM. These limitations allow us to decompose the expression 
(1+ x + Y)~" in an ascending power series: 

As opposed to the case in which x + 0 and y + 0, where (8.59) degenerates 
to the customary equation of a sinusoidal oscillator d2xldz2 + x = 0 with the solu- 
tion x = Xsinz = Xsinoot, in our case x does not tend to zero, the resonant angular 
fiequency of oscillations o will not be equal to coo, and the solution of (8.59) will 
include higher harmonics as well. Having designated a first harmonic of oscilla- 
tions as xl = X&8, where 8 = l o d t  = ~ ( o l o , ) d r ,  and having substituted it in 

place of x in (8.59), after the applicable angular transformations we see that the 
latter contains the terms including cos28 and cos38. Neglecting the third harmonic 
[inclusion of this and higher harmonics actually present in the solution of (8.59) 
results in insignificant corrections to magnitudes given below], we can search for a 
solution to (8.59) in the form: 
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Note that from substitution of xl  = XlsinO in (8.59) it follows that the amplitude X2 
has an order not greater than X: (LC., X2 = X:). 

Assuming that the modulation of tuned circuit resonant fiequency is by a sinu- 
soidal voltage e = E sin R,t, where R, is the angular modulation frequency, and 
substituting y, = d ( q ,  + E), we can introduce a dimensionless modulating voltage 
in the form y = y, sin n,t. Transfixring to dimensionless time z = mot and substi- 
tuting a = R,/oo, we obtain 

y = y, sin a r  (8.61) 

It was assumed above that y, << 1, and we shall consider also that a << 1 (the 
inequality R, << oo is characteristic of FM radar). As y, << 1, we will also have 
rather small variations of amplitudes X I  and X2 and magmtude dOldz, relative to 
their values in the absence of modulation (Xlo, X20, 00) (i.e., of order y,, too). As 
they will vary with fiequency Q, = aoo, we will fmd dX1ldz = ay,J1,  
d2x2/dz2 = aZY,J2, and d20/dz2 = aymd81dz. By virtue of the negligible value of 
the derivative d2x21dz2 = a2y,,,X2, herernafter we need consider only the derivatives 
d 2 ~ l l d z 2  and d201dz2. 

Substituting now (8.60) and (8.61) in (8.59) and applying the standard trigo- 
nometric formulas, we obtain an equation composed of the permanent terms, in- 
cluding functions sin 8 ,  cos 0 ,  sin 20, cos 20, sin 30, and cos30. Let us solve these 
equations, proceeding from the method of harmonic balance, pursuant to whch the 
equation will contain all reduced tuigonometric functions. Thus, for expressing the 
parasitic modulation of resonant o~cillations in the tuned circuit, applicable to fie- 
quency modulation, it is sufficient to use only equations balancing the terms with 
hc t ions  sin 0 ,  cos 0, and ~ o s  20. These are 

9 3 
+3y,X1 sin a z  + - xI3 - - y,XlX2 sin a z  = 0 

16 2 
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Note that in writing (8.62) - (8.64) the terms of order of smallness higher than X: 
were dropped (it was assumed that X2 = x:), and also (assuming that 
dXlldz = aymXl and d20/dz2 = aymdOldz) among the terms including sin a z  and 
cos az, those containing products ay2 or a2y2 were dropped as considerably 
smaller than those containing y, or product ay,. 

For y = 0 and x + 0, the solution of (8.59) gives d0ldz = 1 (i.e., o = oo). For 
x < 0.5 (as assumed above) but not approaching zero we should expect that the 
value d0ld.r will be approximated by d0ldz = a + Ad0ldz. Thus, proceeding from 
the condition x < 0.5, we can assume that A0 << 1. The presence of a modulating 
signal O, # 0) will result in modulation of the tuned circuit resonant frequency, and 
having confined the calculation only to the first harmonics of frequency variation, 
we find that d0ldz = 1 + Ad0ld.r + esinaz. By virtue of the small magnitude of 
Adeldz and higher harmonics of variation of tuned circuit resonant frequency, the 
magnitude E will appear practically as a relative frequency deviation. 

The presence of FM should result in the appearance of parasitic AM. In the 
study of AM in an ideal tuned circuit where the modulator was a linear capaci- 
tance, it was found that the variation of the voltage on this capacitance coincides in 
phase with variation in tuned circuit frequency. This circumstance permits us to 
drop as negligible the higher harmonics of amplitude variation and to search here- 
inafter for magnitude X, in the form XI = Xlo + a sinaz. 

Substituting the expressions deldz = 1 + Adeldz + esinaz and XI = Xlo + 
asinaz in (8.64), and dropping all small terms (noting that ~ d ~ 0 l d z ~  = 0, a << 1, 
E << 1, y, << l), we obtain 

We now substitute the following expressions in (8.62): 

XI = Xlo + asinaz 

d0ld.r = 1 + Ad0ldz + e sin a z  

Dropping terms of a higher order of smallness and retaining in one case only per- 
manent terms, and in the other the terms including a trigonometric ratio sinaz 
(i.e., again applying a method of harmonic balance), we obtain two new equations. 
From the first we find 

The second equation gives the relative frequency deviation E: 
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And finally, substituting following expressions in (8.63): 

X I  = Xlo + a s i n a ~  

d0ldz = 1 + Ad0ldt + e sinat 

,% = -xl;/6 

Again dropping the small terms, we obtain: 

From (8.68) we obtain, for the parasitic AM coefficient m = alXlo 

Thus, within the limits of the accwacy with whlch the coefficients of parasitic AM 
of the voltage on the modulating capacitance were derived, we obtain for FM in an 
ideal tuned circuit using as the modulator a linear variable capacitor (Section 4.2) 
the same result as for the varicap ( this section). 

It is interesting to note following circumstances. We often use the known 
Thompson formula o =: 1/= to determine the influence of a high ffequency 
voltage u = Usinot, applied to the varicap that parallels the coil, on the frequency 
of a tuned-circuit oscillator. Thus, instead of capacitance C the investigator often 
substitutes the expression for equl valent capacitance of the varicap CYq, expressed 
in terms of the constant capacitance 

or as a ratio QllU, where Ql is the first harmonic of a charge present in the vari- 
cap: 

Entering the value x = Xlosinot [U/(cp, + E)] s h o t  and assuming XIo << 1, we 
thus obtain, keeping only the terms up to XI,,? 
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respectively. From these, the expressions for oscillator frequency become 

respectively, where o is the oscillation frequency for Xlo + 0 (i.e., U + 0). Com- 
paring the frequency changes indicated by these equations to that resulting from a 
high frequency voltage applied to the varicap, as derived above by solution of dif- 
ferential equation (8.58) 

(i.e., by the more precise method), we can see that the more precise method yields 
a significantly smaller change. 
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Chapter 9 

Nonlinearity and :Linearization in 
Varactor Control of FM Oscillators 
It is convenient to use electric melhods for frequency control of oscillators such as 
those used in sweep generators md in FM systems, including those used in short- 
range radar. Thus, the relationship between frequency and control signal (a voltage 
or a current) should be as close as possible to linear. Thls requirement is essential 
for short-range FM radar, as has been shown in the first part of this book. 

The most widely applicable eilectronic controller of oscillator frequency is the 
varactor, a special semiconductor diode whose capacitance depends on a constant 
reverse voltage, or several varactors connected in an inverse-parallel or inverse- 
series manner. This makes it necc:ssary to study the nonlinearity of frequency de- 
pendence upon the control voltagc applied to the varactor or varactors. Th~s  prob- 
lem is solved in this chapter. 

In the first investigation phase we will consider that the active component of 
the oscillator is inertialess at the operating frequency, and that the feedback factor 
of the oscillator is a real quantity These assumptions allow us to consider the os- 
cillation fiequency equal to the resonant circuit frequency. It confines the analysis 
to consideration of oscillators using a single-tuned circuit, (i.e., analysis in isola- 
tion from active components). 

In practice the resonant circuits of all single-tuned oscillators controlled by 
varactors can be reduced to the two types shown in Figure 9.1 (if the frequency 
controller uses several varactors, it can be always reduced to a single equivalent 
varactor). We can consider capacitive coupling of the varactor to the oscillator 
circuit as shown in Figure 9.l(a) o'r autoinductive coupling as in Figure 9.l(b). The 
fixed capacitors (Co, C, and parasrtic capacitance C,) included in the circuits allow 
us to take into account not only the capacitance of oscillator circuit elements, but 
also self-capacitance of the actiw component of the oscillator and the package 
capacitance. 

The study of nonlinearity in the dependence of resonant frequency of these 
circuits upon the varactor control voltage is performed below for large frequency 
changes (as in a sweep oscillator), and for rather small variations (the case of 
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Figure 9.1 Circuits of tuned oscillators with (a) capacity and (b) autoinductive coupling to the 
varactor. 

short-range FM radar). Thus, the consideration of large changes is restricted for 
brevity to the case of capacitor coupling of the varactor to the oscillator circuit of 
Figure 9.l(a). The fact is that with autoinductive coupling the capacitance Co is 
necessary and it must also meet the condition Co > C, ,, + C,, where C, ,, is the 
maximum value of varactor capacitance. This condition follows from the fact that 
with autoinductive coupling the resonant circuit of the oscillator is actually a dou- 
ble loop and its second resonant frequency (omitting the above-stated inequality) 
appears commensurable with the oscillator operating fi-equency. With frequency 
control of the oscillator, this circumstance can lead to mode jumping in fi-equency, 
precluding its use in FM radar. The availability of rather high capacity Co certainly 
does not allow large frequency changes in oscillators with autoinductive coupling. 

For the first stage of study of general cases it is further assumed that the 
varactor capacitance depends exclusively on the control voltage applied to it (i.e., 
that it does not depend on the RF voltage on the varactor). The foundation for h s  
conjecture is as follows. While the nonlinearity of the dependence of resonant fi-e- 
quency of these circuits upon the control voltage at predetermined limits of its 
variation is increased by the effect of RF voltage on the varactor, the frequency 
drift also simultaneously increases. In all, the influence on control nonlinearity of 
RF voltage on the varactor for a given frequency deviation should not lead to a 
significant correction. This is demonstrated further by consideration of some spe- 
cial cases. 

It is impossible to obtain the required linearity of control voltage dependence 
in FM signal oscillators and resulting nonlinear distortions of the signal for large 
tuning ranges only by selection of circuit components. Therefore, it is often neces- 
sary to resort to special measures, some of which are also discussed in this chapter. 
We consider in Section 9.4 the widely used method of linearization of the control 
voltage dependence by predistortion of the control voltage with diode-resistor cir- 
cuits. The chapter concludes with a description of several methods of reducing 
nonlinear distortions of the signal. 
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9.1 NONLINEARITY OF FREQUENCY DEPENDENCE OF SINGLE- 
TUNED OSCILLATORS ON CONTROL VOLTAGE OF THE 
VARACTOR WITH LARGE FREQUENCY CHANGES 

The dependence of frequency f of oscillator circuits of Figure 9.1 upon varactor 
control voltage Ev, has a parabolic form, as shown in Figure 9.2. Let us call h s  
dependence the oscillator control characteristic. 

Let us draw a straight-line dependence f,(EvJ in Figure 9.2, intersecting the 
control characteristic at two points such that the greatest absolute frequency devia- 
tions of the oscillator w i t h  the lionits of its variation f,, to f,, on the two sides 
of the line are equal. We will use their magnitude (Af),, = I f  -film, as the nu- 
merical criterion of controll characteristic nonlinearity. We can see that such a cri- 
terion allows us to assert that at any point the control characteristic differs from 
linear by a magmtude Af not greater than (Af),,. 

Let us now move the straight !inefi(E,,J parallel to itself downward so that it 
passes through the least and greatest frequencies of the t u m g  range Cfmin, fma) and 
we will designate this new depende.ncefi*(~vc) (the dashed line in Figure 9.2). 

Let us define Ff as the differewe between fi-equencies f andfi*. We can see 
that 

where (Sf),, is the largesl value o'f the difference 6f = f -A* in the oscillator tun- 
ing range. 

We will confine the discussion for brevity to the analysis of nonlinearity of the 
curve f (E,) for the circuit shown in Figure 9.l(a). The denvation of the greatest 
variations off requires that the capacitances Co and C, should be minimum (i.e., 
that they include only self-capacitance of the active component and package ca- 
pacitance). In the case of autoinductive coupling of the varactor, the capacitance 
Co is important and it must be sufficiently large (Co > C, ,, + C,, where Cv ,, is 

Figure 9.2 Dependence of oscillator fkequency f on the voltage controlling the varactor, and its 
h e a r  approximation. 
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the greatest value of varactor capacitance applicable to frequency f-). Thus, the 
oscillator circuit shown in Figure 9.l(b) does not allow large tuning. 

Thus, on the basis of Figure 9.l(a) we may write the following expression for 
generated fiequency: 

For capacitance of the varactor we have the known expression: 

where C,,,, is the capacitance of the varactor at Evc = 0, cpc is the contact potential 
difference, y is the power of the radical, equal to two for sharp p-n junction and to 
three for a smooth one, and C,, = Cv(Evc ,k) is the capacitance of the varactor at 
Evc = Evc -, /3 = (EvC - Evc min)/(~c + Evc min). Having substituted (9.3) in (9.2), it is 
easy to obtain, for fiequency f 

(a+b)(l+P)'/' +1 

(ab + bd + ad)(l + P)"' +(a + d) 

where a = C/Cv ,,, b = C,,/C, ,,, and d = CdCv ,,. Finally, assuming that 

where C,, is the value of selective system capacitance Css applicable to minimum 
frequency f-, we rewrite (9.4) in the form: 

L=& ( ~ + b ) ( l + / 3 f ~ ~  +l  
fmin (ab+bd+ad)(1+/3)liy +(a+d)  

where z = C, ,,/Cv ,,. 
From Figure 9.2 it follows that the frequencyjf;. is related to the control volt- 

age Evc by 
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Having divided and multiplied the second member in the right part by cpc + E,, ,,, 
it is easy to reduce (9.6) in the form: 

where: Kf=.fm,lf,, is the frequency coverage coefficient, and 
Pmax = (Eve max - Evc rmn)/(qt - Evc m d .  

Having at our disposal (9.5) and (9.7), it would be possible to substitute them 
in a differential (6f)lf,, = flf,, - fig&,,, and then, considering it as a function of 
the magnitude p, to find its maximum. However, to obtain an analytical expression 
for (6f),-lfmm (still strict only for the special case) we will hold constant the first 
term in the right side of thls differential, and change the second member of (9.7) 
from the variable to a variable flf,,. This is not difficult to see using (9.7), 
assuming that the magnitude P,, corresponds to frequency f-. Having performed 
this change and substituted the new expression forh*lf,, in a differential 

we obtain: 

We will consider in the beginning the special case in which the capacitance of 
the varactor C,, is the only capacitance of the resonant circuit (i.e., the capacitors 
C, Co, and C, shown in Figure 9.1 are omitted). Then z = 1, a -+ oo, b = 0, d = 0, 
and (9.8) becomes: 

Study of the differential 6f'lfm, shows that it reaches a maximum value at 

Now substituting (9.10) into (9.9), we obtain the expression for the ratio 



206 Fundamentals of Short-Range FM Radar 

In Figure 9.3 we show with solid curves the dependence of the ratio 
(6f)maxlfmin upon the oscillator frequency coverage coefficient for values y = 2 
(varactor with sharp p-n junction) and y = 3 (varactor with smoothly varying p-n 
junction), calculated using (9.11). The calculation of the ratio (6f),lf,i, for y = 3 
was restricted to values Kf < 1.6, as larger valued are not encountered in cases of a 
varactor with smoothly varying p-n junction. We see that for equal values of the 
coverage coefficient Kf, the deviation from a straight line of the oscillator control 
characteristic is larger for the varactor with a smoothly varyingp-n junction. 

We note from (9.10) that ratios of frequencies at which the magmtude 
(6f)lfmi, appears maximal for given coefficient Kf practically coincide with those 
for (Kf + 1)/2. This circumstance (assuming that a maximum of dependence of the 
dimensionless differential ( 6 f ) l f , ,  on the dimensionless quantity fki, is not 
sharply expressed) allows us to determine (6f)-lfmio by a substitution flf- = 

(Kf+ 1)/2 in (9.9). Thus, we obtain one further expression for (6f)m,lf,e: 

Figure 9.3 Dependence of the ratio (6f ),,lf,, on the frequency coverage coefficient with (- - - - ) 
and without (-) considering the radio frequency voltage on the varactor. 
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The dependence of (6f),,!fm, on coefficient Kfcalculated with (9.12) agree com- 
pletely with those (solid curves) derived using (9.1 l), within the plotting scale of 
the ordinate of Figure 9.3. 

Let us show now for the speciitl case z = 1, a -+a, b = 0, d = 0 that the calcu- 
lation of the influence of an RF volmge on varactor capacitance does not introduce 
significant correction in the result nbtained by determination of nonlinearity of the 
oscillator control characteristic wirh (9.1 1) or (9.12). Naturally, we will consider 
that the tuning range of the oscillator (i.e., coverage coefficient Kf) is futed. Thus 
we will be confined to the case in which the influence of an RF voltage on varac- 
tor capacitance is most sipficant, namely when the varactor with sharp p-n junc- 
tion is used. 

It is possible to show (see Chapter 8) that an RF voltage with amplitude U 
acting on a varactor with sharp p-n junction changes the resonant frequency of the 
circuit of Figure 9.1, with (Io = C, = 0 and C = m, by the correction 

Thls correction allows us, instead of expressing the differential capacitance of the 
varactor by (9.3) for y = 2, to use an expression depicting its equivalent capaci- 
tance, in the following form: 

where U is the amplitude of the RF voltage at the varactor. Having taken advan- 
tage of the earlier identification 

it is easy to reduce (9.13) to the form 



208 Fundamentals of Short-Range FM Radar 

where, as earlier, Cvm, = cV,Jcpc 49, + E,,, ) . 
The amplitude of the RF voltage U appearing in (9.13) and (9.14) varies, as a 

rule, with tuning of the oscillator (i.e., it depends on the control voltage Eve). 
However, as its effect on capacitance Cveq is significant only for small values of 
voltage Evc, we may consider the amplitude to be constant and equal to that value 
which it has for the minimum voltage Evc -. Thus, as the influence of amplitude 
on capacitance C,,, will be greatest for Evc - + qC = U, we consider that this ap- 
plies (smaller values Evc mi, are excluded, as they would cause the opening of the 
varactor p-n junction, which for many reasons is undesirable). Thus (9.14) now 
becomes: 

Supposing now that Evc = Evc mi, (i.e., P = 0), we find from (9.15) the following 
expressions for the maximum value of the effective capacitance of the varactor: 

As for arbitrary and minimum generated frequencies we have 

f = 1 / ( 2 n G )  and fmin = I 1(2n ,/LC,,) , we obtain an expression for the 

ratio of frequencies f lf- from (9.15) and (9.16): 

Unfortunately (9.17) does not allow us to obtain a formula with which we could 
calculate the ratio (6flmaxlfmin for a given frequency coverage coefficient Kf, as was 
possible when the RF voltage actkg on the varactor was ignored in (9.1 1). How- 
ever, resorting to computer facilities and using (9.7) and (9.17), we can find the 
ratio (6f)-lfmmin (recalling that (6f),,,&&,, = (f - f )&i, = flfmin - f *lf-). The 
resulting dependence of (61,lf- on coefficient K, for a varactor with sharp p-n 
junction, taking into account presence of an RF voltage on the varactor, is shown 
in Figure 9.3 (dashed line) together with curves obtained by disregarding this volt- 
age. 

From the curves shown in Figure 9.3, we see that the relative error in the 
value of (6flm,lf- caused by ignoring the RF voltage on the varactor does not 
exceed lo%, when the varactor has a sharp p-n junction (y = 2) and is the only 
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capacitance of the resonant circuit. It is also apparent that in the case of the varac- 
tor with smoothly varying junction. (y = 3), this inaccuracy will be even less, be- 
cause of the smaller influence on its equivalent capacitance C,, of an RF voltage. 

We now return to the general case, in which the capacitances Co, Cp, and C of 
Figure 9.l(a) do not obey the condttions CO = 0, Cp = 0, and C = oo. Unfortunately, 
(9.8) in thls case does not allow us to obtain an analytical expression for the mag- 
nitude (6f)m,lf,b However, it is not difficult to calculate it with adequate accu- 
racy. In this chapter, the case of rather large frequency tuning is interesting to us. 
The derivation of such changes is possible only in the case where the capacitance 
of the varactor plays a significant role in the total capacity of the oscillator circuit 
(i.e., when the inequalities Cv > C o  Cv > Cp, and Cv < C apply). This circumstance 
leads to a ratio f &,,, applicable to magnitude (6f),,lfmin, that is still close to f lf,, 
= (Kf + 1)/2. And as the maximum of dependence of a dimensionless differential 
6f lfm, on the dimensionless frequency f lf,, at Co ;t 0, Cp # 0, C # oo is expressed 
only approximately, a more precise value for it can be obtained with (9.8), in 
which f lfm = (Kf + 1)/2. 

These calculations demonstrate that with a given frequency coverage coeffi- 
cient Kf the dimensionless differential (6f),,lfmi, is reduced (i.e., the oscillator 
control characteristic is more linear), as the inequalities C, > Co, C; > Cp, and 
C, < C apply more strongly. 

Thus, we may meet the requirement for linearity of the oscillator control char- 
acteristic by appropriate choice of the oscillator circuit and capacitors included in 
it, if the allowable deflection from a straight line of that characteristic (Af), = 

0.5(6f),, is w i t h  the value given by (9.1 1) or (9.12). If this is not the case, and 
also when the permissible variation (Af), is less than the value from (9.1 1) or 
(9.12), it is necessary to resort to different methods of linearization of the control 
characteristic. In particular, it can he the method considered in Section 9.3. 

9.2 NONLINEAR DISTORTIONS WITH FREQUENCY 
MODULATION USING VARACTORS 

The derivation of formulas for calculation of nonlinear signal distortions is carried 
out below for FM oscillators using varactors. This derivation is based on the 
widely applicable method of series expansion in terms of a@,), where o is the 
radian frequency of oscillations and p, = UnIE, is the ratio of modulating voltage 
to an initial (bias) voltage on the varactor in the absence of modulation. The series 
obtained below converge if P, < 1. Under the usual condition Evs - U, I Ud, 
where U,, is the amplitude of the RF voltage at the varactor, these series always 
converge. As can be demonstrated from the calculations, they converge quickly 
enough for pn < 0.7, and therefore in subsequent analysis we need consider only 
the fust three members of the series. In general the thud harmonic is of great im- 
portance in the case of S-shaped ccmtrol characteristics. The control characteristics 
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of most FM oscillators with varactors resemble a parabola and the fourth member 
of the series is negligible as compared with the third member. This is demonstrated 
below in an example of capacity coupling of the varactor to the resonant circuit 
withCo = 0. 

The effect of RF voltages on varactor capacitance is initially neglected in 
analysis of nonlinear distortions for the general case (where the oscillator circuits 
with parasitic capacitance are as shown in Figure 9.1), as was assumed for the case 
of large frequency changes. For the special case in which the circuits shown in 
Figure 9.1 are reduced to a circuit with only the capacitance of the varactor, it will 
be shown that this omission is quite acceptable. 

9.2.1 Nonlinear Distortions for Capacitor Coupling of the Varactor to the 
Oscillator Circuit 

The expression for the natural radian frequency of the oscillator circuit shown in 
Figure 9.1 (a) is: 

The capacitance of the varactor is represented as 

where C, = c v O d m  is the capacitance of the varactor with no modula- 

tion, p, = UJ((pc + E,,) is the relative amplitude of a control voltage, and R, is the 
radian frequency of the modulating signal. 

Substituting (9.19) in (9.1 8), decomposing the resulting expression in a power 
series in P,cosR,t and restricting the series to three members, we obtain 

where 

Pn A =- as2 

' 2y[(asbs+bsds+asds)+as+ds](as+b,+1) 
and 
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Here, w, is the oscillation frequenc y for the initial condition of no modulation (i.e., 
C, = C,, a, = CIC,, d, = CdC,,,, and b, = CdC,). Utilizing the known formula 
cos212t = ( I  + cos2SZt)/2 and assuming that the nonlinear distortion coefficient K2 
for the second harmonic is the ra,aio of coefficients for cos2Qmt and cosQmt, we 
find: 

As the magnitude A2 from (9.20) is simply the relative frequency deviation 
(i.e., A2 =  awl^,), (9.21) can be witten: 

Substituting in (9.22) the magnituldes A2 and A, ,  we obtain the following depen- 
dence of the nonlinear distortion coefficient of the second harmonic upon the rela- 
tive frequency deviation Awlo, anti upon parameters of the circuit: 

In the specific case where C +a#, C, = 0, Co = 0 (i.e., for a, +a, b, = 0, and 
d, = 0) we obtain from (9.23) 

From (9.23) and (9.24), it follows that for a given relative frequency deviation 
Aolw, the nonlinear distortion coefficient is minimum in the case where the ca- 
pacitance of the varactor is the only capacitance of the oscillator circuit: 

K2min = 0.75Aw/wS for y = 2 (sharpp-n junction), and 
K2,, = 1.25Ao/wS for y = 3 (smoothp-n junction). 

For the special case in whlch Co = 0 (i.e., for d, = O), the fourth member of (9.20) 
was obtained. This allows us to determine the nonlinear distortion coefficient for 
the thud harmonic: 
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K~ 3a: - 6as AB + 4 ~ '  { [ ~ ( 2 ~  - 1) - b, (y + 1)] (b, + 1) + 3bs A} 
K3 =a 

as (as + 2 ~ ~ 1  
(9.25) 

A 0  
X- 

0 s  

where A = bs(y + 1) + y - 1, and B = a, + bs + 1. For C+w and Cp = 0 (differently 
than for a,+w and bs = 0), it follows from (9.25) that 

(i.e., the ratio K3/Kz is of the same order as the relative frequency deviation 
Aolo,). Table 9.1 shows the ratio (K3/Kz)l(Awlos), calculated for representative 
values of as and bs. From this table we can see that for C # w, C,, # 0 the ratio 
(K3/Kz)l(Aolw,) is increased, as contrasted to the case where the varactor is the 
only capacitance of the oscillator circuit. However, for C -+ a, and C, = 0 it is 
possible to obtain a rather large relative frequency deviation Amlo,. The presence 
of the finite capacitance C and nonzero capacitance Cp usually reduces the peak 
value of deviation, especially in case of the varactor with smoothly varying p-n 
junction. Therefore, in many conditions the nonlinear distortion coefficient of the 
third harmonic is less by an order of magnitude that that of the second harmonic. 

Table 9.1 
Calculated Values of the Normalized Ratio of Nonlinear Distortion Coefficients 

9.2.2 Nonlinear Distortions for Autoinductive Coupling of the Varactor to 
the Oscillator Circuit 

For analysis of nonlinear distortions in this case we find, as earlier, the expression 
for the radian frequency of oscillations. For Figure 9.l(b) 
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where p = LIIL is the sensitivity coefficient of the varactor and capacitance C, in 
the resonant circuit. Let us substitute (9.19) in (9.27) and decompose the resulting - 

expression as a power senes in P,,cosR,t. Considering three members of the se- 
ries, we again obtain (9.211) for the nonlinear distortion coefficient of the second 
harmonic KZ, but in which the constants are now 

PC, A =-  P and ' 2yds+p2bs+p2  

where ds and bs have the same sensle as earlier. 
Given the expressions for A ,  imd A2, with (9.22) we now establish the follow- 

ing relation of the nonlinear distol'tion coefficient K2 to the relative frequency de- 
viation Awlw, and parameters of th~e resonant circuit: 

Assuming m ( 9 . 2 8 ) ~  = 1, ds = 0, and bs = 0, (i.e., assuming Co = 0 and Cp = 0), we 
obtain again (9.26): K2 = (2y - 1)d1w/4w, (i.e., we again find that for a given rela- 
tive frequency deviation the nonlinear distortion coefficient is minimum in the 
case where the varactor is, the only capacitance of the oscillator circuit). For set 
values of magnitudes ds and b,, thc nonlinear distortion coefficient is reduced with 
increase of the sensitivity coefficientp of the varactor in the oscillator circuit. 

9.2.3 Nonlinear Distortions in the Case of a Single-Tuned Oscillator Cir- 
cuit with Allowance for RF Voltage on the Varactor 

We assume now that in the oscillirtor circuit of Figure 9.1 Co = 0, Cp = 0, C+w, 
and p = 1. In this case the two curcuits degenerate into one composed only of a 
series-connected inductor and vankctor. Let us now take into account the influence 
of an RF voltage on varactor capacitance. As in earlier consideration of the non- 
linear oscillator control charactenstic, we will confine the analysis to the case in 
which this effect is most significant, namely where a varactor with sharp junction 
(y = 2) is used. 

The expression of interest to us, for equivalent capacitance of the varactor, 
can be obtained from (9.13) By substitution in the last term of E, for 
Evs + U,cosR,t, and is 
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Using the known relationship pn = Un/(cpc + E,,), and also a = UJ((pC + E,,), we 
reduce (9.29) to the form 

where, as earlier, C,  = c,,,,/- is the capacitance of the varactor with 

no modulation and disregarding any RF voltage. 
We note that the amplitude of an RF voltage U$ on the varactor with FM is 

normally included in a. However, we will subsequently approximate a as a con- 
stant, considering that it is generally difficult to take these variations into account, 
that it is possible to make these variations small by stabilizing the output voltage 
amplitude, and that the result obtained has only qualitative value. 

Having now substituted (9.30) in the formula for oscillator circuit frequency 

w = 11 6 and considehg only three members of the series in P,cosR.t, we 

obtain 
o = wSe9 (1 + A,,, cos sz,t - 4e9 COS' n,t) 

p, 1+(15/16)a2 4 =- and 
" 4 l+(3/16)a2 

where o,, = o,[l + (3/16)a2]-'" is the oscillator frequency for the case of no 
modulation with allowance for influence of RF voltage on the capacitance of the 
varactor. 

Having taken advantage in this case of (9.22), in which A,, and A2, now cor- 
respond to A, and AZ, using the expressions for A,, and AZeq we fmd the following 
dependence between the nonlinear distortion coefficient K2 and the relative fre- 
quency deviation Aolo,: 
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Calculations using (9.3 1) demonst rate an acceptable level of error in determination 
of the nonlinear distortion coeficuent K2, while disregarding the RF voltage at the 
varactor, in the case where the varactor has a sharpp-n junction (y = 2) and is the 
only capacitance of the oscillator circuit. For all reasonable values of a, the error is 
an order less than the value K2 = (3/4)Ao/o,, from the formulas obtained earlier: 
(9.23), (9.28), and fiom (9.31) wnth a = 0. It also appears that in the case of the 
varactor with smoothly varying junction thls error will be even less. 

9.3 LINEARIZATION OF DEPENDENCE OF OSCILLATOR 
FREQUENCY ON CONTROL VOLTAGE 

It was demonstrated above that the oscillator control characteristic is nonlinear 
when the frequency control voltage is applied directly to the varactor. The result is 
the appearance of nonlinear disto~tions on the FM signal. In short-range FM radar, 
nonlinearity of the control characteristic and nonlinear distortions of the FM signal 
are often much less than when control voltage is applied directly to the varactor. 
To avoid this situation, we can apply special correcting circuits (CC). In this case, 
the control voltage E, is the input to the CC input, and an output voltage E,,, is 
applied to the varactor. Thus, the CC will convert a voltage E, to E,,, in such a way 
that the oscillator control characteristic (now understood as the dependence of 
frequency f on a voltage E;, instead of on E,,) is nearly linear. 

We will find the form of C(' transforming characteristic E, = @(E,) that is 
necessary for a strictly linear control characteristic. For thls we need the depen- 
dence of frequency f upon the vm actor voltage E,,, whlch can either be calculated 
or obtained experimentally. Let u% now take advantage of a rectangular coordinate 
system (Figure 9.4), where on the ordinate we plot both the frequency f and the 
voltage E,,, and on the abscissa thle voltage E,. Not setting any plotting scale in the 
figure, we select two arbitrary points, one of whlch corresponds to the initial value 
E,,, and the other to the final value Ecf of voltage E,. Let us draw a straight line 

Figure 9.4 Control characteristic AE,) and dependence E,,(E,) for correction circuit. 
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through points with coordinates (Ecs, f,,,,), (Em, f-), where f,h and f,, are the 
minimum and maximum frequencies of the control characteristic. This will define 
our straight-line control characteristic. Having now designated on verticals to the 
abscissa at the point with values Evc, applicable to frequencies f of the straight-line 
control characteristics, intercrossed by these verticals, and having passed a curve 
through them, we find the form of the required CC transforming characteristic 
Evc = @(&I. 

Because the dependence of oscillator frequency on the varactor voltage in 
single-tuned oscillators is represented in a rectangular reference system by an in- 
creasing curve with decreasing slope in accordance with increase of voltage Evc 
(Figure 9.2), the curve Evc = @(Ec) should always have increasing slope with in- 
creasing voltage Ec (Figure 9.4). 

One of the possible simple CCs producing an optimum transforming charac- 
teristic according to Figure 9.4 is the circuit shown in Figure 9.5. Its resistors are 
chosen such that as Ec increases, diode Dl is turned on first, followed by diode D2, 
and so forth. After turning on diode Dl, a voltage Evc will appear with increasing 
Ec, and turning on each subsequent diode will reduce the slope as the voltage E, 
increases. 

We will now obtain expressions that allow us at given points of a required 
curve Evc = @(Ec) (continuous curve in Figure 9.6) to calculate the resistance of 
CC resistors shown in Figure 9.5, and also to determine required limits to the 
variation of Ec. To simplify these expressions we make the assumption that the CC 
diodes have indefinite resistance in the cutoff state and zero resistance in the con- 
ducting state. For same purpose, we assume that the increments of the voltage Ec 
between points of conduction of diodes Dl and D2, diodes D2 and D3, and so forth, 
and also between conduction of the diode Dm and the greatest value of a voltage E, 
on the required curve Evc = @(Ec) are all equal. 

With these assumptions, instead of the required transforming characteristic 
Evc = @(Ec), only the characteristic appearing as a segmented line, shown in Figure 
9.6 (dashed line), need be obtained. We also note that as the actual dependence of 

Figure 9.5 Diode-resistive correction circuit. 
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Figure 9.6 E,(E,) required for compenshon and its segmented approximation with diode-resistive 
CC 

currents in a diode on the applied voltage is smooth rather than as assumed above, 
it is possible to obtain a rather smooth curve for Evc = @(Ec). T h s  usually allows 
us to closely approach the required oscillator control characteristic with few di- 
odes in the CC. 

Sometimes it is only possible to realize a CC that produces, instead of the de- 
sired characteristic E,, = @(Ec), the form E',, = Y ( E c )  displaced on the ordinate by 
some additional magnitude Evcadd (i.e., E',, = E,, + E,, add). The application of the 
required varactor voltage is then vbtained by subtraction of Evc ,dd kom the voltage 
E',, (Figure 9.7). We subsequentlv consider that adjustment of the CC can reshape 
the performance rvc = Y(Ec) .  

We note that in the CC shown on Figure 9.5 all resistors Rol,  Roz, ... Ro, are 
equal. However, one of them, as will be shown later, should differ kom others. Let 
us consider as those the resistance Ram. 

We now give to voltages E, and E',,, applicable to opening of diodes Dl, D2, 
... Dm, the subscripts 1, 2 ... m (apparently, E,, = Ecl and E', = E',,) and enter 
identifications: Rol = RO2 = . . . k?o(m-l) = RO, Rom = lRo ( I  is a positive number), 
R, + Ron = R*,, RolR, = x,, RdR = y,  and El E',, - 1 = a,, where n = 1,2, . . . m. 

It is apparent that for output voltage E',,, at whch diode Dl is at the boundary 
between conducting and open states and all remaining diodes are closed, we obtain 

whch can be easily changed to the form 
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E, 

Figure 9.7 E, and E, versus control voltage. 

For output voltage cc applicable to the open state of all diodes, and also to 
the case when the diode Dm is at the boundary between conducting and open states 
(i.e., gVc = &,), we can write 

where EL is the voltage on the diode at which it begins to conduct. From here, as- 
suming that 

we obtain the following two expressions: 

The input voltage of the CC, applicable to the boundary between open and con- 
ducting states of the arbitrary diode, apparently exceeds by EL the voltage at a 
point of connection of the diode to resistors R, and Row We may thus write: 

from which the equation system follows: 
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Substituting the last equation of system (9.36) into (9.34), we obtain 

On the basis of accepting the abo\'e condition, that 

we can write a following system c?f equalities: 

Substituting now (9.38) into (9.35 ) and using (9.36) and (9.37), we obtain 

where b, = E',,l T :,,, c = E:,,I E'Vck 
Solving jointly (9.32:), (9.33). and (9.37), we find for magnitude 1 

d = B(a, l a ,  - 1 )  

B (m-1) -A  
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Now we will obtain the formula for selection of the voltage Evc add. Observing 
the condition Ecl - E& 2 FVcI (this is necessary, following from the first equation of 
system (9.36), because to Ecl - E& = PVc1 there corresponds a case = 0, i.e., 
R I  -+ co), but, as Ecl - Elck - m(Eck - Ecm), this condition can be represented as 

But fiom (9.34) and (9.35) it follows that 

Excluding the voltages Eck from (9.4 1) and (9.42), we obtain: 

The inequality (9.44) applies when there is a positive common denominator in 
its right part. Otherwise the sign 2 changes to I. But as the voltage Ecm can only be 
positive, the second case is not of interest. A condition for a positive denominator 
is the inequality: 

from which it follows that with (m - l)Evck - mEvcm > 0 there can be realized only 
the transforming characteristic Kc = Y(Ec), obtained by offset of the required 
transforming characteristic Evc = Y(Ec) on the ordinate by Ev add, nonzero and de- 
fined by the inequality (9.45). 

It is desirable that the voltage Ecm not be too large. Analysis of (9.44) demon- 
strates that the least possible value of a voltage Em is reached at magnitude Ev d d ,  

defined by 

where M =  (m - l)Evck - mEvcm. 
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9.4 CALCULATION OF DIODE-RESISTIVE CORRECTION 
CIRCUITS 

The expressions obtained in Section 9.3 suggest the following procedure for calcu- 
lation of the correction circuit s h o w  in Figure 9.5: 

1. For a calculated or experimentally determined oscillator control charac- 
teristic F(Evc), we find the shape of the transforming characteristic Ec = @(Eve) 
(i.e., we create an arbitrary plotting scale on the abscissa) providing a linear de- 
pendence f (E,). 

2. Based on tolerance re~quirements for linearization of the control 
characteristic f (E,), we choose a number of diodes m used in the CC. 

3. From the transforming clnaracteristic Ec = @(E,,) of step 1 ,  we determine 
volfage~ Evcl, Evcz, . . . Evcm, Evck. 

4. Knowing the number of diodes m and voltages EVc1, Evc2, . . . Evcm, Evck, we 
find from (9.46) the value Evc add. 

5. We find the voltages GcL = Evc1 + Eve add, E t c 2  = Evc~ + Eve add, 

g v c m  = Evcm + EVc add, and g v c k  = Ev, k + Eve add. 

6. Substituting in the right side of (9.43) values m, EvcI, Evc2, . . . Evcm, and 
Evck, we find the least possible vloltage Ecm ,, and select a voltage Ec, slightly 
greater than this. Thus, the inequality Ecl > EVc1 will apply and the resistance R I  
will have a final value that will permit its implementation as a variable (as well as 
resistance R I ,  RZ, . . . R,). This milkes possible alignment of the CC at some stage 
of setup, the need for which can a~ ise after its realization. 

7. using 

which follows from (9.34) and (9.35), we calculate a voltage Eck. 

8.  Using the expression EcI = Eck - m(Eck - E,,), we define the voltage E,, . 
9. We select a voltage E, proceeding from the condition E > Eck and from 

available possibilities. 

10. We calculate magnitudes a,, a2, ... a,, (a, = EIE,,, - l) ,  bl ,  b2, ... b,-1 
(b, = EvcnIEvcm), and c (c  = EvcmIE, :k). 

11. Using B = (Eck - Ed)IEVck - 1 ,  from (9.35), we find the value of B. 

12. Using (9.39), we find the values X I ,  X Z ,  . . . x,,-~. 
13. We calculate A = al (x  ,, bz, . . . &I). 

14. Using (9.40), we calculate I.  
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15. Using (9.37) and (9.32), we find values x,. 

16. Having set the value of resistance R, we calculate resistances Ro = R and 
Ro, = lRo. 

17. We calculate magnitudes R1 = R&I, R2 = Rdx2 .. . R, = R&, and find 
resistance R1 = R; - Ro, R,-I = R', - Ro, R, = R', - Ro,. 

Having set the value R (step 16), we note that for greater R the values of resis- 
tance of all other resistors of the CC will be larger. Therefore, for greater R there 
will be larger input resistance to the CC as well as a higher voltage source E,, and 
accordingly the power consumed by it will be less. There will be also less power 
consumed in th~s  case from the source E. It is seen that for larger values of resis- 
tance in the CC, its band of operational frequencies is reduced because of the pres- 
ence at its output of the varactor capacitance (for direct connection to the CC) or 
the input capacitance of the following stage. Thus, it is necessary to take into 
consideration possible requirements for quick variations of E,. 

In case of a large Evck, the desired values of the voltage E and the input volt- 
ages Eck obtained from CC calculation can become so large that deriving them for 
standard oscillators becomes inconvenient. For example, to obtain a desired value 
of Eck may require an amplifier with a large linear dynamic range and accordingly 
a very large supply voltage not commonly used in modem electronic components 
(such as transistors, integrated circuits). In such a situation, it is convenient to re- 
peat the CC calculation starting from new values of output voltage obtained by 
reducing Evcl, . . . Evck by a factor K. The new calculated values Evc add, and accord- 
ingly, Evcl, gvc2, . . . gvcm will appear reduced by K and the resulting value of the 
voltage Eck for a suitable choice of K will be more easily realized. The deriving of 
required voltages on the oscillator varactor should in this case be realized by con- 
necting an amplifier with gain K to the CC output and as before, reducing the volt- 
age Evc ad [e.g., application of a voltage Evc ,dd to the second side of the varactor 
(Figure 9.7)]. The requirements on the voltage E, the transforming characteristic 
of the amplifier hooked up to CC output, and its supply voltage thus can be main- 
tained within practical limits. 

We will illustrate this with a specific example. In an actual oscillator, tuning 
from 730 MHz to 860 MHz was carried out by variation of the varactor control 
voltage between 3.OV and 36.OV. Calculated for a CC with four diodes, the values 
of voltages were found as: Evcl = 3.OV, Evc2 = 7.OV, Evc3 = 13.5V, Evc4 = 22.5V, 
and Evck = 36.OV. 

We find from step 4 of the proposed method of calculation the following 
magnitudes: M =  (m - l)Evck- mE,,,, = (4 - 1)36 - 4 x 22.5 = 18V. 

From step 5 we find FVc1 = 50.2V, Efvc2 = 54.2V, Efvd = 69.7V, E * , ~  = 69.7V, 
and cck = 83.2V. 

We find the smallest value Ec4 ,, = 119.2V + EL and set it at Ec4 = 122V. 
Finally, from steps 7 and 8 we calculate extreme values of the voltage E,, 

whch is to be sent to the CC input: Eck = 145.6V + EL and Ecl = 5 1.2V + E:. 
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Thus, for supplying a voltage E', directly to the CC input, the voltage E must 
exceed 145.6V + Ed and thus the ,mplifier output with a linear transforming char- 
acteristic should be not smaller tlnan 145.6V + Ed (on a reinforced voltage). An 
even larger supply voltage is necea.sary for generating that input voltage. 

A reduction of the voltages E,.,, and Evck by a factor of five (K = 5) will give 
the following results: gvcl = EvcllK = 0.6V, gvc2 = Evc21K = 1.4V, gVc3 = Evc3/K = 

2.7V, Kc4 = Evc4/K = 4.517, ak = EVcdK = 7.2V. Having repeated the calculation 
and now substituting in the formulas new values Kvc, instead of E,,, we find Ed min 

= 23.6V -+ Ed. We accept ECq = 25V + Ed. Thus, we obtain: Eck = 29.9V + Ed, 
Ecl = 10.8V + EL. 

So, in the second case the vcltage E should exceed only 29.9V + E& and re- 
quirements on the amplifiers (or amplifier, as the deriving of CC input voltage in 
this case should not require the a'dditional amplifier) appear much more reason- 
able. Apparently, the requirement for a linear transforming characteristic can be 
met with an output voltage 36V, and the supply voltage for the amplifier can be 
selected near 50V (convenient and equal to the supply voltage of amplifiers). 

9.5 DECREASING THE NONLINEAR DISTORTION OF THE FM 
SIGNAL WITH A CORRECTING SIGNAL 

The approach outlined in the previous paragraph for linearization of oscillation 
frequency with control voltage can be used as well for reduction of nonlinear dis- 
tortions of the FM modulating signal. However, for small frequency deviations and 
high frequencies (typical for shorn-range radar), other methods may be better for 
ths  purpose. The first of these mcthods is use of a circuit with a diode compensa- 
tor for nonlinear distortions, shomn in Figure 9.8. In this circuit the compensation 
diode D, is in its open state for any value of modulating voltage. Thus, for sinusoi- 
dal modulation, an alternating voltage with unequal amplitudes of half-waves will 
appear at resistance R2 at the expense of nonlinearity of the volt-ampere character- 
istic of the diode. The same voltage will be applied to the varactor (a circuit 

I ~ornpewator ( TO oscillator 

Figure 9.8 Circuit of modulator with dicde compensator for nonlinear distortions. 
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composed of the capacitor and an inductor, between whch is coupled resistor R2 
and the varactor, which should have rather low impedance at modulation frequen- 
cies). It is clear that given the polarity of the compensating diode and varactor 
shown in Figure 9.8, a positive half-wave of alternating varactor voltage corre- 
sponds to a reduction in varactor capacitance, and therefore an increase in oscilla- 
tor frequency. Taking into consideration the form of dependence of the oscillator 
fi-equency on the varactor voltage (Figure 9.2), it becomes clear that feeding the 
modulating signal to the varactor according to the circuit of Figure 9.8 will allow 
reduction of nonlinear distortions in the FM signal. The best compensation of 
nonlinear distortions in the actual circuit is ensured with an appropriate selection 
of the compensating diode and resistors R1 and R*. 

The nonlinearity of the transforming characteristic of transistors can also be 
used for reduction of nonlinear distortions of the modulating signal. Apparently, it 
is possible to offer different alternatives of transistor networks for compensation of 
modulating signal nonlinear distortions. But a necessary condition of operation of 
all such circuits is the forming of a sinusoidal modulating signal of alternating 
voltage with unequal amplitudes of half-waves and its application to the varactor 
so that the larger half-wave leads to a reduction of varactor capacitance. 

Two circuits for compensation of nonlinear distortions are shown in Fig- 
ure 9.9. In the circuit of Figure 9.9(a) the compensating transistor is included in 
the preamplifier for the modulating voltage. In the second circuit, Figure 9.9(b), it 
acts as an active component of an emitter follower, through which the modulating 

Figure 9.9 Circuit for diode-transistor modulator (a) with amplification and (b) without amplifica- 
tion of the modulating signal. 
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voltages are applied to the varactcv of the FM oscillator. The alignments of both 
circuits to achleve minimum nod inear distortions of the signal are conveniently 
realized by variation of the emitter current of the transistors, varying the resistors 
in emitter circuit. 

Figure 9.10 shows two possibilities for compensation of nonlinear signal dis- 
tortions by applying varactors as modulators in FM oscillators. The first uses the 
varactor (or varactors) in an intermediate oscillator circuit, the resonance fre- 
quencyf, of which is lower than oscillator frequencyfo. The linearity of the control 
characteristic is thus regulated by variation of tuning of an intermediate oscillator 
circuit at frequency fo. The other method of linearization is to derive the required 
FM oscillations by offsetting the I'M oscillator frequency and use of a supplemen- 
tary oscillator (local oscillator). Thus, at the output of the mixer the oscillation 
with the difference frequency is selected. The principle of compensation of nonlin- 
ear signal distortions in this case 1s quite obvious. The frequencyfo of the FM os- 
cillator is made much greater than the required frequency; for example, n times 
greater. Therefore, the maximum relative frequency deviation Aflfi of these oscil- 
lations should be n times less than the required relative frequency deviation. This, 
as follows from (9.23) and (9.28), will lead to an n-fold decrease in nonlinear dis- 
tortions as compared with conventional oscillators. This decrease will be main- 
tained after conversion of generated FM oscillations by the mixer to the required 
band of frequencies (i.e., after decreasing the frequencyfo by the factor n). 

Figure 9.10 Modulator circuit with detuncd intermediate oscillator circuit 





Chapter 10 

Theory of the Single-Tuned Transistor 
Autodyne and Optimization of Its Modes 

Transistor autodynes, as discussed above, are the combined microwave units 
which, along with generation of a radiating signal (including FM signals), perform 
the initial processing of a reflected signal accepted by the common antenna and 
carrying the information on target speed and distance. The basic circuit of the sin- 
gle-tuned autodyne, executed, for example, using Klapp's circuit with external 
phasing capacity C4 and varicap C3, is shown in Figure 10.1. High-frequency ele- 
ments (C , ,  C2, C3, L) form Klapp s circuit, and all active losses in the elements of 
selective system and in the antenna (losses on radiation) are expressed by an 
equivalent active conductivity G ,. By virtue of the fact that in the microwave 

Figure 10.1 Basic circuit of Klapp's single-tuned transistor FM autodyne. 
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range a generator feedback circuit shifts the signal phase (i.e., the feedback fac- 

tor kp, is a complex value), the phasing capacitance C4 is usually added to the cir- 
cuit of the microwave oscillator, combining with transistor input conductivity the 
additional phase shift and improving the phasing conditions at the moment of self- 
excited oscillation and the stability of output frequency in the steady-state mode. 

In the circuit there is an emitter automatic bias chain Re, C, that is used for 
mode stabilization of the direct current and fiom which the autodyne signal ER, is 
output. Apart from this, the output of the autodyne signal as modulation of oscilla- 
tion amplitude is formed by the peak detector Dl, 4 ,  R3, and C5. 

10.1 ABBREVIATED DIFFERENTIAL EQUATIONS FOR THE 
SINGLE-TUNED TRANSISTOR AUTODYNE 

We will express the abbreviated differential equations on the basis of the general 
abbreviated equation (7.3). For the case in which auxiliary control circuits are ab- 
sent and a single emitter autobias chain is present, the equations become: 

This system represents five valid equations, as the first two equations are complex. 
The equations define the behavior of five unhown hct ions  of the problem: U, 
U,, cp, I$, and E. The equations are differential, and their order is determined, as in 
Chapter 6, by the order of the symbolic admittances Y, and Ye. 

Nonlinear complex functions Y and N are determined, according to [I,  21, by 
the parameters k and yo of the high-frequency circuit and by complex y-parameters 
of the transistor, averaged on the first harmonic of signals, which depend on the 
mode: 

. . 
Yll +Yo N(E,U) =U,/U = -ilk@ = -- 

Y12 -ky,  

( ~ 2 1  - ky, )(yn - ky,) 2 Y(U,  E) = -Y22 - k  yo 
Yll +Yo 
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We can see that if it is necessary to take into account the nonlinearity (dependence 
on operating point) of all four a~~eraged parameters of the transistor, yii, where 

i,j = 1, 2, then both functions N and Y appear dependent on the operating point, 
and the analysis becomes complicated. If the input conductivity yl, and the con- 

ductivity of the return reaction y ~ :  may be neglected, then N = -1 / k = const and 
the analysis becomes simpler. 

By virtue of sharp selectivity of the autodyne oscillatory system, the voltages 
u, and u are approximately sinus01 dal: 

where of, is the frequency of free c~~scillations of the autodyne. 
The received reflected signal is delayed relative to that radiated by a time 

r = 2rlc, where r is the distance between the target and the autodyne and c is the 
speed of light: 

Here, K is the factor accounting for reduction of the microwave signal voltage be- 
tween transmission and reception. For the definition of K consider the ratio con- 
necting the power P,, of the recel ved signal, the active component of the antenna 
input conductivity G,, and the amplitude Irefl of the received current: 

Ire,, = ,/s%,c,s%,c,. Taking into accmnt that the power P,, is proportional to radi- 

ated power Prad: 

we obtain: Ire,, = 2UssGss & ; that IS, 

Factor x in the case of a point target varies inversely as the fourth power of range r 
P I :  
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and in the case of a distributed object inversely as the square of r: 

where hfi is the wavelength in free space, Go,, is antenna power gain, Fa,, is a func- 
tion of antenna orientation, o the radar cross section, and No = 0.3 to 1 is the factor 
accounting for losses in reflection from a distributed object. 

We will now enter the frequency difference h = of, - oo between the fre- 
quency of free fluctuations ofi and the carrier frequency oo, and we will copy ex- 
pressions for complex amplitudes of signals (10.4) - (10.6) as follows: 

irep = kuSs (t - T) exp( j [ht -oh= + cp(t - r)]) (10.1 1) 

Let us now substitute (10.10) and (10.11) in (10.1), and having applied the 
theorem of displacement for operational fractional-rational functions [4], we 
obtain: 

Y, (P + j W ,  exp ( jcp) = Y(E, U)U, exp ( jcp) 

( -[ 
(10.13) 

+ lcUSs (t - r) exp -my. + cp(t - T)]) 

If automatic bias is used in the autodyne then the system (10.12) - (10.13) for 
the high-frequency part of the circuit must be augmented by the equation for the 
bias chain, whlch is usually that for a single RC chain (as in Figure 10.1): 

where T, = ReCe is the time constant of the bias circuit, and Je is a constant compo- 
nent of emitter current, depending on the operating point. 

The system of the equations (10.12) - (10.14) forms the system of general ab- 
breviated equations of an autodyne, describing with a consistent approach all the 
processes involved. Equation (10.13) includes the signal delay that predetermines 
the basic complexity of the autodyne systems analysis. 

At the same time, estimation using (10.7) - (10.9) shows that in all practically 
important cases the parameter K is small (i.e., I,.& = uUSs = 6USs) and as a conse- 
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quence an inequality z <<. T,, applies, where T,, is the time constant describing 
duration of the synchronization pl ocess influencing the generator of a signal with 
amplitude Irefl. This means that for a delay r varying slowly as a hnction of time, 
U,(t - r) and cp(t - z) can be neglected (i.e., we may consider UJt - z) = Uss(t) 
and cp(t - r) = cp(t)). In this case the subsequent analysis becomes simpler. 

10.2 LINEARIZED DIFFERENTIAL EQUATIONS OF AUTODYNES 
FOR SMALL REFLECTED SIGNALS 

In actual short-range radar systems the level of the reflected signal appears quite 
weak, in spite of the fact that the target range is rather small. If the received signal 
is entirely absent an autodyne mode is characterized uniquely by values 
u,:, u', E', cpo, 4' which are defined by the equations of the steady-state mode 

(i.e., by the abbreviated equations in which the operator p is zero). In the case of 
weak reflected signals (i.e., for I,..! = SUssGss) we can assume that the variations of 
the steady-state mode resulting £?om the reflected signal (i.e., the autodyne signal) 
are rather small: 

We will expand nonlmear functions U,dv, NUd4, and YU,dv in Taylor's se- 
ries for powers of the small deviations and reject terms above the first order of 
smallness (i.e., we will linearize the equations): 

Having substituted these decompositions in system (10.12) - (10.13) in view 
of the equations of the steady-stane mode, we obtain a system of linearized high- 
frequency equations: 

+ juS: c ( p +  j l )  - yo]a  = Ir, exp(-jo,?r) 



232 Fundamentals of Short-Range FM Radar 

where n = (UIN)(aNIaU) is a function not equal to zero if the feedback factor of 
the generator kfi depends on the mode. If autobias is used in the autodyne, one 
more linearized equation is added to (10.15) - (10.16): 

We will consider as a simplification the case in which the feedback factor 
does not depend on the operating point, and write for this case the linearized equa- 
tions in matrix form: 

where G = ReY, B = ImY, Yre(p,h) = ReY& + jh), Y,,(p,h) = Im(p + jh), and all 
functions of the regime are calculated at a point of the autonomous mode (the in- 
dex "0" of functions is omitted for simplicity). 

Using (10.18) it is possible to analyze the influence of the received signal on 
the autodyne and to establish a relationship between the output signal, the input 
amplitude Irefl, and the autodyne parameters. For this purpose we must find under 
Kramer's formulas the operational expressions for increments of oscillation ampli- 
tude, bias voltage, and phase: 

and then proceed to the originals (required functions of time). Here, A is a charac- 
teristic determinant of system (10.18), and Ai (i = q ,  a, E) is a determinant formed 
fiom A by replacement of the column made of factors at a required variation i, by 
the column consisting of hct ions images in the right part of (10.18). Acting in 
the specified way, it is easy to determine transfer factors of an autodyne for any 
variation q,a,e resulting fiom I* 

X 

Ire,, k cos oB.s 

-IEflksinoB~ 

0 

(10.18) E 

a 

= 
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10.3 EQUIVALENT CIRCUllTS OF AUTODYNES FOR SMALL 
REFLECTED SIGNALS 

We may use, as the useful signal m an autodyne, the deviation of any parameter 
(amplitude, frequency, etc;.) from the stationary value, caused by external mflu- 
ence. In short-range radar autodyne systems this may be an increment of a high- 
frequency voltage appearing at tht peak detector or an increment of current in any 
of the active element electrodes. 

For designing a method of low-frequency signal processing and a choice of 
detection parameters we must kmrw the form (or spectral structure) of the auto- 
dyne output voltage. For this purpose it is necessary to calculate increments q and 
a of the amplitude and the phase of the voltage u(t). We will write the equations 
determining these increments, havrng excluded from (10.18) an increment E :  

(P) = B0 - Ym8(p, h), Y,, (p) = ( p ,  h)  - G O  
(10.21) 

d j  - -  
a ' 1 w (p) = - ---- -- 

El- E 
cos 0 = --- 

a J e  cos 0 ' U = + U P )  

and where E' is the bias voltage an which the collector current of the transistor be- 
gins to flow (the cutoff voltage). 

The system of equations (10.20) characterizes the linear two-port network 
shown in Figure 10.2, with parameters Yj,, on which the external currents 
Ireflkcoswfi~ and -Ireflksincofi.r operate, causing the voltages .rl and @a at the input 
and output of the two-port network. 

We will note that equality to zero of a determinant 

determines the characteristic equation of the system describing local stability of 
single-frequency oscillations in the transistor generator (Chapter 6). 
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Figure 10.2 The equivalent small-signal circuit of single-tuned autodyne for calculation of 
increments. 

We will consider some special cases of expressions (10.21). If the active ele- 
ment of the generator is inertialess at the carrier fiequency (for example, an elec- 
tronic lamp or a field-effect transistor at moderately high frequencies), then B = 0, 
dBldU = 0, and factors Y,, become: 

For an autodyne using an inertialess two-pole active element with fwed autobias 
(Ye -+ oo and W@) = O), the expressions for Y, become even more simpler: 

The application of linearized equivalent circuits significantly simplifies the 
analysis of specific autodynes with small reflected signals and allows us to estab- 
lish some of their common properties. 

10.4 THE FORM AND SPECTRUM OF THE OUTPUT SIGNAL OF A 
SINGLE-TUNED TRANSISTOR AUTODYNE 

In this section we will obtain in an obvious form the expressions in time for ampli- 
tude and frequency of oscillations of the single-tuned transistor autodyne and ana- 
lyze the spectrum of the output signal. We will assume a chain of autobias for the 
most common case as inertial, and neglect the internal autodyne noise. 

For the single-tuned case Yss(p) = Gss(l + pT), where G,, is the active conduc- 
tivity of the selective system at resonance, T = 2/co06 is the time constant of the 
loop, and 6 is its attenuation. In the case considered, the abbreviated differential 
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equations of the autodyne are obtained from the general equations (10.12) - 
(10.14): 

We will express these five equations in an obvious form: 

where cp, and N are the argument and magnitude of the complex function N. 
This system of equations (10.28) describes the autodyne mode of the single- 

tuned circuit with any amplitude o; reflected signal. For small reflected signals, the 
linearized equations may be obtained from (10.18) or on the basis of the linearized 
equivalent circuits of Figure 10.2, In which for our case 

dB' 1-y+pT,'. 
Y,, (p) = -uO - - ar t  I+PT,' 

3 Y J P )  = PTG,, 

where = T,  - is thc normalized autobias time constant, and 
1 + Re ( a ~ ~  1 a ~ )  

aJe'au is the factor deter- 

mined by the slope of the cutoff $and bias diagrams at a stationary point (Section 
6.3).  
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Let us assume further that the target moves towards the autodyne antenna at a con- 
stant speed v (i.e., r = vt and z = 2rlc = 2 vtlc). Then 

where RD is the Doppler frequency. Now from (10.29) we finally obtain the lin- 
earized equations: 

d2rl drl TT,'-+(T'+T,')-+(~-~)~ = - Ir@ k 1 Gss 
U dG 

(cosn,t - 0,~; sin ~ , t )  (10.30) 
dt2 dt -- 

d 2 a  d a  dBIdU 
T'C'U - + T'U - + - dB I dU dq 

Tel - 
dt2 dt dG/dU (l+'+a~idll  dt 

where Tf = ?j/(u~) is the normalized selective system time constant. 
Gss 8.Y 

Now the final expression for the signal will be determined following the solu- 
tion of (10.30) - (10.31) and will become: 

We shall consider (10.30) whose right-hand side has the form: 

where Y1 = arctan(RDTi). Then the solution (10.30) will be written as the sum of a 
free and a forced component: 
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where a, and a2 are the roots of the characteristic equation describing local 
stability, 

C1 and C2 are constants of integration, and 

If the independent mode is steady (only in this case it is meaningful to speak 
about an autodyne mode) free components of the solution decay, and the forced 
component represents the autodyne signal with a voltage: 

where the phase Y, = n -Y1 -Y2, and the amplitude is determined fiom 

We will now address the defmntion of the autodyne signal with phase a(t), for 
whlch we shall consider (10.31), the right-hand side of whch, after finding of a 
signal ~ ( t ) ,  will become: 

where 

Now we will transform the right-hand side of (10.3 1) to the form 

where A, = AcosY, + BlsinY, + D tanp = A2IA1, A2 = -AsinY,, + BlcosYq + C. 
Free components of the solutnon a(t) decay, and the forced component (the 

autodyne signal) becomes: 
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where la =n-p-Y, ,  a= 4 l u  
R , T ' , / ~  cos p ' 

Now it is possible to find the expression for kequency of the autodyne oscilla- 
tions: 

(A, lU)cos(Q,t +Y,) 
a(t) = a,$ + 

T',/- cos p 

Thus, for an object moving with constant speed, the increments of amplitude 
and oscillation frequency (autodyne signals) are sinusoidal knctions of time at the 
Doppler frequency. We will now determine the spectrum of the generated signal of 
the autodyne, having taken advantage of (10.33) and (10.36): 

where mu = i j / ~ '  is the amplitude modulation index. 

As we can see, the high-frequency signal of the autodyne represents an oscil- 
lation, simultaneously modulated in amplitude and phase, and the frequencies of 
modulation are equal to the Doppler frequency. For an exact definition of spectral 
components we expand u(t) in a Fourier series and obtain, assuming for simplicity 
Y, = % = 0, la = d 2 :  

where J,, (a)  is the Bessel function of the first lund. 
From this expression we can see that the spectrum of the output signal of the 

autodyne is asymmetrical about the carrier frequency (i.e., amplitudes of the com- 
ponents with frequencies a,+ + nRD and a,+ - noD are unequal). 

If the maximal phase deviation is small, the decomposition into sine wave 
components (10.39) becomes simpler, as the Bessel functions of an order greater 
than unity are negligible. In this case the spectrum of the autodyne signal contains 
five components: 

mu J0 ( E )  1 2 - J,  (a) cos(o,$ - 0,)t 
- I 
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If both modulation indices are $mall (i.e., (a)  << 1 , mu << l), then it is possi- 
ble to neglect the harmonics with frequencies ofi + 2aD, and the three remaining 
components of the spectrum will become: 

From (10.41) it follows that in this case the amplitudes of spectral sidebands 
differ from each other in amplitude by G . 

So, we have established that the spectrum of the signal at the autodyne genera- 
tor output contains sinusoidal components shlfted by nRD, and is asymmetrical 
about the frequency of free oscilla~ions. Asymmetry of the spectrum indicates the 
presence of amplitude and phase modulation simultaneously. Therefore, autodyne 
signal processing can be performed either by peak methods (as is usually done), or 
by phase. 

We will now discuss what occurs in an autodyne with complex selective sys- 
tem and autobias circuits. In this case the order of the equations determining q(t) 
and a(t) will be high, but for small reflected signals they will remain linear. There- 
fore, their solutions will again include decaying free components (in the steady- 
state mode) and forced components having the form (10.33) and (10.36), as in a 
single-tuned case. Differences will consist only in more difficult definitions of 
amplitudes and phases of increments. From here it follows that all conclusions 
concerning the structure of the output signal spectrum may be completely trans- 
ferred to the case of the more complex oscillatory system. 

10.5 FORM AND SPECTRL M OF THE HIGH-FREQUENCY SIGNAL 
FROM AN FM TRANSlSTOR AUTODYNE 

With frequency modulation of the carrier, the analysis of the output signal spec- 
trum becomes significantly more complicated. In this case, an increment of ampli- 
tude q(t) will contain not only the autodyne signal (10.33) with amplitude (10.34), 
but also a PAM signal determined for any law of modulation by (7.52). Thus, in 
the FM autodyne we have: 
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and the function @(t), reflecting the effect of the PAM signal, is defined differently 
for different laws of modulation (see Chapter 7). 

We will address the analysis of the oscillation phase increment, which is cal- 
culated from (10.3 l). In this formula, in addition to an increment of phase a there 
also enters an increment of amplitude q that consists of an autodyne signal and a 
PAM signal. From (10.3 1) we can see that the PAM signal enters into the equation 
if high frequencies are considered (i.e., dBldU # 0). From (10.31), we obtain for 
an inertialess autobias case (i.e., T, = 0): 

1 ~ B I ~ U  
a(t) = 

T'U dGIdU 

1 dBldU 
TfU dG / dU (1 - y ) ~ [ ~ e - t l T f  T jetwa(t)dt  1 dt 

where Y2 = arctan[llDT1l(l-y)]. Having integrated in (10.43) the autodyne incre- 
ments: 

we obtain: 

1 dBldU 
a(t) = -- 1 Irdk 1 

(l-Y)-- sin(ll,t - Y,) 
U dGldU a D T  Gss ,/(I - y)' + (ll,~')' 

(10.44) 

It is obvious that the two first terms of the right-hand side of (10.44) are con- 
nected to the reflected signal and may be transformed to: 
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where amplitudes A,  and A2 of the signal are connected to the autodyne circuit 
parameters and its mode. In the absence of a reflected signal (Irefl = 0) these terms 
vanish. 

Let us now consider the last term in the right part, determining the conversion 
of the modulation signal to a phasc: increment. We note at once that for an inertia- 
less transistor (dBldU = O), the last term vanishes. In the case of a sine wave 
modulation function, @(t) is defined by (7.5 1): 

Now 

Finally we have: 

1 dBldU -- 1 -,IT 5 e r , ~ .  sin(Qmt -yal)d t 
T'U dG 1 dU dm 

(10.45) 

So the last term defines the modulation signal in a phase increment. Now we rep- 
resent the autodyne output signal as: 

where subscripts ad and PAM designate the amplitudes and phases of the autodyne 
signal and the signal of parasitic amplitude modulation. 

We have established that even for a rather simple law of modulation of fie- 
quency (a pure sine wave), the spectrum of high-frequency output oscillations in 
the autodyne is very complex. Wc. will not write here strict expressions for ampli- 
tudes of each spectral component (it is too unwieldy), but we will estimate a spec- 
tral structure directly from (7.54). 
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The spectrum contains the following components: 
0 Those with frequency a,+ of free oscillations; 

Components of the FM signal with frequencies afi + nR,; 
Components of the autodyne signal with frequencies afi + kSZD near 
the carrier frequency; 
Components of autodyne signal with fiequencies afi f nR, f MZD 
near each component of the modulation frequency. 

There are also components in the spectrum whose amplitudes are much less 
than these components that do not strongly d u e n c e  the autodyne modes. The 
structure of the spectrum shows that processing of the autodyne signal can be car- 
ried out on any harmonic of the modulation frequency (most conveniently on the 
largest harmonic of the FM spectrum), around which it is possible to locate a sig- 
nal at the Doppler frequency (autodyne signal) on which to carry out the final 
processing. 

In the case where frequency modulation is carried out using a more complex 
law than the sine wave, the analysis becomes significantly complicated, but the 
results of the analysis of spectral structure are rather easy to predict. In the spec- 
trum the components responsible for modulation vary, but around each of these 
components there are components shifted by the Doppler fi-equency. 

10.6 TRANSFER FACTORS OF AN AUTODYNE ON A VOLTAGE 
AND A CURRENT AND MODE OPTIMIZATION 

Theoretically, it is possible to use the change of any parameter describing the 
mode (amplitude, phase, bias voltage, direct currents of transistor electrodes, etc.) 
as the useful signal from the autodyne. In practice we more often select an auto- 
dyne amplitude signal from the peak detector, and also an increment of a constant 
component of the collector (emitter) current. In this section we establish the auto- 
dyne sensitivity for both these methods, and consider, first, in detail, the case of 
low frequencies for a particular transistor, and then briefly describe the results for 
the case of high frequencies. 

First, however, it is necessary to note that it is not always possible to recom- 
mend as modes of operation those modes in which the sensitivity is high: it is nec- 
essary to carry out additional analysis of stability for these modes with various 
sorts of interfering influences, to reveal their potential powers, and also to deter- 
mine whether it is possible to realize these modes practically. 

10.6.1 Analysis for Low Frequencies for a Particular Transistor 

Parameters of an autobias chain are usually selected so that with the required filter 
its time constant is small in comparison with the time constant of the loop 
(T: << T'). This is necessary for prevention of faltering generation (Chapter 6). 
Assuming T', = 0, we obtain fi-om (10.34): 
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- 

where K, = ' is the voltage transfer factor of the autodyne. 
*,,k 1 GS 

For calculation of KU let us assume, as earlier, a piecewise linear approximation of 
the transistor static characteristics. 'rhen 

where S and S, are the slopes of the linearized characteristics of collector and 
emitter currents, and yo,1(@) are decomposition factors of a cosine impulse of cur- 
rent that depend on the cutoff angle in the usual manner: 

We will now determine the fcrrmulas for the derivatives that are included in 
the expression for function y: 

Now we will find a connecti~n between the function y, included in (10.47), 
and the cutoff angle in an obvious lbrm: 

1 b[yo e(0cos0)lx] (btan0)ln 
- y=--- - (10.5 1) 

cos 0 I+b0ln l+b0 ln  
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where b = S a ,  is the autobias parameter. Note that if we analyzed a case of com- 
bined emitter and base autobias, the formula for y would be similar, but the magni- 
tude of b would change to b = S a ,  + SbRb. We calculate the normalized derivative, 
which is included in (10.47): 

Substituting now (10.5 1) and (10.52) in (10.47), we obtain the final expres- 
sion for the voltage transfer factor of the autodyne: 

As we can see, this formula is quite complex. However, analyzing it qualita- 
tively, it is possible to draw a number of important conclusions. 

We first consider the term (2sin9)/rry1. For 9 = x (at the point of self- 
excitation of the autodyne), yl = 1 according to (10.49), and sin9 = sinx = 0. 
Therefore, at point 9 = x this term is zero (i.e., KU has a maximum). 

Let us consider the term (h,, - cos9)/(l + b9lx). If the autobias parameter is 
selected so that 

then KU again reaches the maximal value. We will call the value of the autobias 
parameter, appropriate to this maximum, "optimum" B,,. 

We note that the presence of a maximum of the voltage transfer factor of the 
autodyne at the point of initial oscillation excitation was found by I. L. Bershtein 
in 1946. The physical treatment of this fact is clear, as at the point of excitation 
any external influence results in a strong mode change. 

We now consider the autodyne properties of the single-tuned generator in the 
case when the increment of the constant component of collector current of the 
transistor is observed. As this increment does not enter directly in the linearized 
equation (10.18), we will connect it with a variation of amplitude: 
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where U ( t )  is the increment of collector direct current, and hl and YJ are its 
amplitude and phase. For piecewise linear approximation J(U,E) = SUyo(B), from 
whlch we obtain: 

dl d'y dcose dy ( C O S ~  F E )  
-- = sy, +su--e-- =Syo -SU---e -- 
dU dcose dCJ dcose U U d U  

Calculating the derivative dE/dU from (10.27), we frnd after transformations 

D/ I , ~  k 
where K, = --- is the current transfer factor of the autodyne. 

Y O ' Y I  

Therefore, we have establishe~d that the voltage and current transfer factors of 
an autodyne are connected in a complex manner. Nevertheless, from (10.56) it is 
possible to draw a number of the important conclusions. At the point 8 = n, as 
follows from (10.54), the function KU has a maximum equal to l/(f&,T). From 
(10.56) it follows that at this point KJ = 0. The second maximum of KU is at the 
point b = b, = (cosO)lyo. We can see that at this point kJ is also maximal, and 
therefore KJje,,) = Kde,,) = l/(SLDT). Since it is possible to show that the term in 
parentheses in (10.56) is a monotonic function of cose, then Kj has no other 
extrema. 

We note that the theoreticall) derived equality of voltage and current transfer 
factors of the autodyne at an optimum point does not provide a basis to judge 
equivalence of both methods of crtraction of the useful signal. So the question of 
absolute size of the usehl signal (in millivolts) that corresponds to the chosen 
method of forming the response is frequently important. 

In Figure 10.3, the calculated family of diagrams of voltage transfer factor of 
an autodyne as a function cutoff angle is shown for different b, and in Figure 10.4 
similar diagrams are shown for the current transfer factor. We can see that K, has 
two zones of maximal values: at the point of oscillation excitation (cos8 = -1) and 
in the point appropriate to small cutoff angles (0 2 90"). The shape of the curves 
varies slightly with change of the Q-factor of the loop, natural frequency, or Dop- 
pler frequency. Dependence of K ,  on the cutoff angle has a monotonic character, 
but the zone of the large values also is very narrow. 
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I cos Q 
C 

-1.0 -0.5 0 0.5 1.0 

Figure 10.3 Dependence of autodyne voltage transfer factor on cutoff angle, for different values of 
the bias parameter. 

10.6.2 The High-Frequency Case 

Analysis of the autodyne mode for high frequencies for the transistor (i.e., for fre- 
quencies exceeding the boundary fkequency of the transistor for slope&) becomes 
significantly more complicated. For calculations, it is possible here to take advan- 
tage of the high-frequency piecewise-linear model of the transistor and of analysis 
using an equivalent high-frequency cutoffangle. 

The basic results of calculation of voltage and current transfer factors of the 
autodyne are shown for the case of high frequencies in Figures 10.5 and 10.6. As 
we see, the basic character of diagrams does not vary, a maximum Ku at (3 = n 

Figure 10.4 Dependence of autodyne current transfer factor on cutoff angle for different values of 
the bias parameter. 
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cos Q 
C 

-1.0 -0.5 0 0,5 1.0 

Figure 10.5 Dependence of autodyne voltage transfer factor on cutoff angle for different frequencies. 

remains in place, and the second maximum is displaced by increased cutoff angles. 
The same situation is characteristic for current transfer factors. 

10.6.3 Choice of Mode with High Autodyne Sensitivity 

Consideration of mode choice for an autodyne for reception with high autodyne 
sensitivity is connected to the analysis of some specific phenomena, characteristic 
of transistor self-oscillatory systems at h g h  frequencies and beyond the fiame- 

Figure 10.6 Dependence of autodyne cunent transfer factor on cutoff angle for different 
frequencies. 
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works of this book. We will therefore discuss only the results that are of practical 
importance. 

It was shown above that the first zone of the maximum of voltage transfer fac- 
tor corresponds to the point of self-excitation. However, it is impossible to rec- 
ommend the mode 0 = TC for practical use under the following circumstances. 

1. The amplitude of the reflected signal I,efl at the input to the autodyne is 
proportional to the amplitude of the radiated signal Us. The point of excitation 
corresponds to small amplitudes of oscillation, and therefore I,.=$ and the absolute 
value of the autodyne signal are also small, despite the large values of KU. 

2. Power efficiency of the mode 0 = TC is low, as there is a low operating ra- 
tio of collector voltage that results in a sharp decrease in the efficiency factor. This 
circumstance may be very significant, especially for onboard systems. 

3. The mode close to the cutoff of oscillations is also unprofitable because it 
is unstable globally: oscillation in the autodyne may fail for insignificant variations 
of parameters (e.g., voltages of power supplies), and hence the radar may fail to 
function. The same circumstance may be important if it is necessary to deploy a 
large batch of devices without individual testing. 

The mode of large oscillations at b = bop,, which we have theoretically called 
the "optimum," corresponds to intersection of the cutoff curve of the generator 
with the asymptote of the bias curves, and is thus the point of crossing curves (the 
point of autodyne steady state) that exists only at infmity and cannot be achieved 
in practice. This asymptotical mode is certainly not realized in practice because of 
the proximity to the so-called overstrained mode. Detailed consideration shows 
that it is necessary to choose b = 0.7bOp, and to operate in a critical mode (at the 
boundary between understressed and overstrained modes). This mode (as opposed 
to the mode at the point of oscillation excitation) is favorable in every respect: it is 
stable globally, easily realized, and the output power and efficiency factor are 
large. 
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Chapter 11 

Autodyne Modes of Transistor Oscillators 
with Strong Interference 
In Chapter 10 it was shown that the delayed reflected signal in an autodyne causes 
a complex periodic mode in whzh the increments of oscillation amplitude and 
phase, and other resulting increments (e.g., the direct emitter current), are quasi- 
sinusoidal functions of time, varying with the Doppler frequency. The choice of an 
autodyne mode for operation in a short-range radar is chosen to achieve high auto- 
dyne sensitivity (i.e., a strong response to a target moving in the radar antenna 
beam). The necessary sensitivity us often not too high to preclude use of simple 
circuits. However, in some cases autodynes must have properties that can be ex- 
tremely difficult to achieve without certain complications or improvement of the 
circuit structure. 

So, for example, in systems where autodynes are used over long periods (in 
steady-state moving target detectors, security devices, instruments for measuring 
of substance parameters, etc.) there arise major issues of maintaining high fre- 
quency stability of the signal. We note that in modem security systems the re- 
quirements of electromagnetic compatibility in certain regions of the frequency 
range often preclude use of autodyne variants having low hequency stability. In 
onboard short-range radar the olaposite situation applies: often, because of the 
short duration of the autodyne opcxation a high frequency stability is not required, 
but the basic problem is reliabilitv and speed of range measurement. In such sys- 
tems, the most important issue is autodyne noise immunity horn various interfer- 
ence types, principally synchronous and repeater jammers. 

Stabilization of microwave amutodyne frequency in the usual ways is not al- 
ways possible because of specifics of the application. The problem may be re- 
solved to an extent by reliance on the phenomenon of external synchronization of 
oscillations, introducing a need filr theoretical analysis of autodyne properties of 
synchronized microwave generators. The same problem also arises in a number of 
practical cases, for example, whcn a powerfil jamming signal whose amplitude 
and frequency corresponds to the band of synchronization is incident on the auto- 
dyne system, causing frequency locking to the jammer or the transfer of the auto- 
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dyne to a mode of quasi-sinusoidal beating. Here the synchronized jamming is 
sufficiently h&l that it is necessary to reduce its effects. 

We must add that an erroneous opinion is held by some radar experts that the 
radar will fail when its autodyne is locked in frequency or transferred by jamming 
to a beating mode. This is actually far fiom being so. In this chapter the theoretical 
consideration of autodyne modes in the presence of an active synchronizing jarn- 
mer will be carried out. The analysis is based on results of published works on the 
synchronization theory of self-oscillatory systems, where a certain class of circuits 
for synchronized transistor oscillators is investigated in detail. Such analyses are 
aimed at development and substantiation of concrete recommendations for design 
of autodynes maintaining their required properties in the mode of frequency syn- 
chronization by a powerfid jammer. 

The material in ths  chapter is developed in the following sequence: we derive 
again the abbreviated differential equations of the system and then briefly describe 
the steady-state synchronous modes, their stability, definition of the synchroniza- 
tion band, and the beating mode in the circuit without autodyne influences. After 
that, the autodyne properties in the presence of a jammer are investigated, the bi- 
furcation of the steady-state variations in the system are considered (i.e., the transi- 
tions from behavior or variations of one type to behavior of other type), and con- 
crete recommendations for practical use of the synchronized autodynes are devel- 
oped. 

11.1 THE COMMON PROPERTIES OF AUTODYNE MODES OF THE 
SINGLE-TUNED SYNCHRONIZED OSCILLATOR 

11.1.1 Abbreviated Equations for the Synchronized Oscillator 

Now let us consider again the generalized circuit of the transistor oscillator with an 
ideal transformer (Figure 11. l), similar to that considered in Chapters 6 and 7. We 
will consider that two signals - the synchronizing jammer frequency and the re- 
flected target echoes (the usehl signal) - influence the oscillator, and these are 

'a" 

Figure 11.1 The circuit of the transistor oscillator with the ideal transformer, under the influence of 
a reflected signal Ireg and a synchronizing jammer signal I,.. 
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represented by current sources with complex amplitudes I,, (with frequency a,,) 

and I,J =I,,, exp[j(cp-Q,t)], respectively, where, as before, cp is the phase of 

the high-frequency voltage on the oscillatory system u,(t), and QD is the Doppler 
fiequenc y. 

For simplicity we will characterize the transistor by a high-frequency parame- 

ter Yzl , proportional to the complex nonlinear conductivity Y(U) , which for a 
bipolar active element appears as: 

r (U) = K, i , ( u )  

. . 
where k p  = UI U, = k  is the colmplex feedback factor of the generator, which in 

the case of an active clement represented by a two-pole is equal to the 
transformation factor k, 

Sl (U) = Y,, is the complex slope averaged over the first harmonic, and 

U is the amplitude of the transistor base voltage whose complex ampli- 

tude is r l i  = Ue' " 
On the basis of the approach developed in Chapter 7, based on equating the 

currents flowing into element "a" of the circuit in Figure 1 1.1, we obtain the syrn- 
bolic abbreviated equation of the qystem as: 

. . 
Y S ( ( p  + jh)  USS = Y(U)USs+Isvn+  ire^ (1 1.2) 

Here, Yss is the symbolic conducrivity of a circuit abbreviated with respect to the 
carrier frequency coo, p is the differential operator for slowly varying functions of 
time U(t) and cp(t), and h = ow - oo is the frequency difference between synchro- 
nized and reference signals. Divuding (1 1.2) as usual into its real and imaginary 
parts, we obtain the system of equations for the problem in an obvious form: 

cos cp + I ,  cos RJ) (1 1.3) 
dt 

where T and Gss are, as previous1 y, the time constant and resonant circuit conduc- 
tivity, G(u) = Re Y(U) and B ( b )  = Im Y(U). From system (1 1.3) - (1 1.4) there 
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follows, for I,, = 0, the equations of the usual autodyne (discussed in Chapter lo), 
and for Id = 0 the equations for the synchronized oscillator investigated in our 
previously published works [l ,  21. 

A distinctive feature of (1 1.3) - (1 1.4) in comparison with the equations for 
the usual autodyne is that their right-hand terms are functions of a synchronizing 
signal, which in powerful jamming is not small. Therefore these equations cannot 
be analyzed using the previous approach: it is impossible to linearize them around 
a steady-state independent mode as is commonly used in autodyne analysis, as it is 
now impossible, even for a small target signal, to limit consideration to a small 
right-hand term, especially with a large synchronizing signal. In a real situation 
this jamming synchrosignal amplitude I,, may be quite significant, especially if 
synchronization is carried out by a powehl active jammer. Therefore, we will no 
longer impose any restrictions on the synchrosignal amplitude. 

The reflected signal Zrg is usually assumed to be small, as is typical for short- 
range systems. We will assume that the synchronizing signal may result in large 
deviations of the steady-state mode fiom independent, but, nevertheless, because 
IreY is small it is possible to linearize the equations (1 1.3) - (1 1.4), but now around 
a steady-state synchronous mode. It is then possible to determine in the usual man- 
ner the transfer factors of the linearized system and to study more in detail the 
features of synchronized oscillator behavior for small influences of a Doppler fie- 
quency signal. 

11.1.2 Abbreviated Equations in Normalized Parameters 

Now we will describe, following our previous works [ l ,  31, the basic properties of 
transistor oscillator synchronous modes. For this purpose we should accept a 
model of nonlinearity. We will use further, following [3], a linear approximation 
of functions G(U) and B(U) around a steady-state independent point Uo: 

Let us note that such a linear approximation does not correspond at all to the 
initial linear model of nonlinearity: for such an approach it is not the static charac- 
teristic but rather a complex electronic conductivity Y(U) = G(U) = jB(U) that is 
approximated by the linear model (1 1.5), and this model of conductivity corre- 
sponds to a parabolic approximation of an osci l lato~ (instead of static) character- 

istic 11 (U) = Y(U) U . This is illustrated in Figure 11.2 where real and approxi- 

mated dependence of electronic conductivity on amplitude are shown, as well as 
the appropriate oscillatory characteristic. 

It is possible to give one more example for acceptance of the model repre- 
sented by (1 1.5). Frequently the model of an inertial active element is based on 
introduction of a so-called pure delay T ~ ~ , .  In other words, it is considered that in 
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the generator feedback circuit (or inside the active element) there is a dispersion- 
fiee delay line with transfer factor exp(-prder), and therefore the output current i(t) 
lags behind the input voltage u(t) by the phase q d e l  = ofizde/. In this case an identi- 
cal approximation of the real and imaginary parts of electronic conductivity of an 
active element is justified: 

Z(U) = I(U)exp( joz,,) = I(U)(cos oz,, + j sin oz,,) and 

Now the system of equations (1 I .3) - (1 1.4) can be rewritten in the normalized 
parameters as: 

Here the following parameters are used: 

a = UIUo is the normalized amplitude of the synchronous fluc- 
tuations, 

5 = hTlg is the normalized frequency difference of the syn- 
chrosignal, 

6,  = n,T / g is the normalized Doppler frequency, 

approx. k 
Figure 11.2 (a) Real and (b) approximatd functions of electronic conductivity on amplitude and the 

oscillatory characteristic appropriate 10 approximation. 
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is the normalized derivative, 

is the normalized synchrosignal amplitude, 

is the normalized amplitude of the reflected signal, 

is dimensionless time, and 

is the nonisochronism parameter in the independent 
mode of the oscillator. 

The sense of the parameters used here is discussed in detail in [3], so we will note 
only that all regime functions included in these parameters are calculated at the 
steady-state independent point (i.e., for I,, = IreJ = 0). We will consider in more 
detail a sense of the entered parameter a .  

For a case of a pure delay we have: 

a B i a u  (al~l lau)sin(o=, ,)-  ma=-=- 
aG I au (alyl I a u )  cos (COT,,) 

- -tan(o%d) 

For the independent generator with an inertial two-pole G(Uo) = G,, and 
B(Uo) = (of. - oo)TGss. From ths  it follows that: 

Thus, in case of a pure delay a parameter tana defines the frequency deviation of 
free oscillations from the natural frequency of the selective system o o  (i.e., the 
isochronism of the generator). 

In modem inertial active elements the character of dependence G(U) and 
B(U) may be the diversified, and for them the model with a pure delay is not often 
used. However, near the steady-state point the functions G(U) and B(U) are usu- 
ally smooth, and it is possible to use the linear approximation (1 1.5) for them. 
Thus, the parameters B(Uo)IG(Uo) and tana = (aBIaU)l(aGIaU) may not coincide, 
generally speaking. If the complex slope Y contains a conductivity B = const, in- 
dependent of amplitude, then the capacity or inductance appropriate to it can be 
attributed to a circuit so as to reduce the problem to an inertialess active element. 
If B depends on U (e.g., due to a pure delay or an inertial process in the active 
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element), a ;t 0 and the generatcv is anisochronous. Therefore, a in a common 
case is also named as the generator anisochronism parameter. 

In the absence of a reflected signal, @ = 0 and the system of the equations 
(1 1.6) - (1 1.7) corresponds to the abbreviated equations of the synchronized gen- 
erator using the normalized arnplirude a and phase cp of the oscillations: 

da 
- -a(a-1) = Fcoscp 
dT 

T h s  system of equations is investugated in detail in [ l ]  by the phase plane method. 

11.1.3 Steady-State Synchronous Modes 

Now we will describe, following: our previous works [I], the equations for the 
steady-state synchronous mode olmined from ( I  1.8) - (1 1.9) with time derivatives 
equal to zero: 

These equations define a family of so-called amplitude-frequency characteristics 

W C s )  45):  

and phase-frequency characteristics (PFCs) ~ ( 5 ) :  

Local stability of steady-state synchronous modes is determined by the char- 
acteristic equation: 

Stability is defined by two borders: b, = 0 (Border M ) and b2 = 0 (Border Q ), 

whlch are set on AFC plane by the equations: 
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Figure 11.3 Amplitude-frequency and phase-frequency characteristics of the locked isochronous 
oscillator. 

Border M - 3a-2=0  

Border Q - c2 + 5(3a - 2) tan a +(a - 1)(2a - 1)(1+ tan2 a )  = 0 

The structures of the AFCs and the PFCs are shown in Figure 1 1.3 for a = 0 
(the isochronous generator) and they correspond closely to known characteristics. 
In the same figure are shown two borders of stability for the synchronous mode (M 
and Q), a horizontal straight line and the stability ellipse constructed from the 
characteristic equation of the problem. 

We can see that in the isochronous case for low amplitude synchronous jam- 
mers (F < 0.25), the AFCs represent closed ellipses, having vertical tangents at 
points of crossing with the border of stability Q (i.e., at points where stability of 
the synchronous mode is lost at border Q). In general, any crossings of AFCs and 
PFCs with border Q are accompanied by vertical tangents. For F > 0.353 the AFC 
becomes open-loop, and stability is defined by border M. 

The PFC for small inputs is similar to the arcsine function and stability is lost 
at border Q, where the PFC has vertical tangents. For F > 0.325 the stability in the 
PFC is determined by border M. 

In the anisochronous case ( a  f 0) the AFCs and PFCs are curved (Fig- 
ure 11.4), but, as before, for small F stability is determined by border Q, and at 
large stability by border M. 

Figure 11.5 shows the dependence of the generator synchronization band on 
the amplitude of the synchronous jamming signal. These diagrams are constructed 
using the joint numerical solution of AFC and PFC equations and borders of sta- 
bility. On these curves it is possible to frnd a band of frequencies in which the 
jamming results in autodyne synchronization at the given amplitude F of the 
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Figure 11.4 Amplitude-frequency and phase-frequency characteristics of the locked anisochronous 
oscillator. 

10 

6 

4 

2 

0 
2 3 

Figure 11.5 Dependence of synchronizat ion band on amplitude of synchronous jammer signal 

jamming. Earlier thls zone of syrrchronism was considered a failure zone of radar 
operation, but below it is shown that thls is not so. 

11.1.4 Transients at Synchronism 

To understand the processes in the synchronism mode, as distinguished £?om the 
independent case (Chapter 6), we will address the analysis of phase portraits of the 
system (10.10) - (10.11). The equation of phase trajectories is derived £?om 
(11.10) - (11.11) by exclusionof time: 

da a [F cos q~ - a(a - l)] - -- - (11.15) 
d'q -Fsinq-ac-a(a-1)tana 
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The space of conditions (phase space) represents a cylindrical surface (cp,a), which 
is called a phase plane. 

For construction of a phase portrait - families of trajectories a(cp) from (1 1.15) 
for given parameters F, 5, of the system - it is necessary to obtain data on character 
and arrangement of so-called special trajectories: special points (conditions of 
balance or steady-state modes), limiting cycles, movement on which corresponds 
to a periodic mode (beating mode), and separatrices that divide areas correspond- 
ing to specific trajectories. Further, it is necessary to discover how the qualitative 
structure of the phase portrait varies for changes of system parameters, (i.e., to 
construct the so-called bifbrcation diagrams) and to determine the features of all 
bifircations: transitions from one structure of phase portraits to another. We will 
not do this here in detail, but discuss only the important results for later use. 

For zero frequency difference (in a mode of full synchronism 5 = 0) there are 
three special points k, b, c on the phase portrait (Figure 11.6) which are, respec- 
tively, a knot, a saddle, and an unstable focus. The isoclinal lines of vertical 
(ILVT) and horizontal (ILHT) tangents are shown in Figure 11.6. We see that the 
attraction area for a steady synchronous mode at a point k is the entire phase plane. 
For increasing frequency difference 5 the steady lcnot k and the saddle b approach 
and finally merge on the border of stability Q, forming a special point of the sec- 
ond order: a saddle-knot. From the merged saddle separatrices the steady limiting 
cycle is formed, on which movement around the phase cylinder corresponds to a 
quasi-periodic beating mode. The appropriate phase portrait is shown in Figure 
11.7, from which we see that the limiting cycle is globally steady (i.e., its area of 
attraction is the entire phase plane). If a transition from the phase portrait of Figure 
11.6 is carried out by increasing jamming amplitude then the special points b and c 
approach each other and soon merge and disappear, leaving only the point of a 
synchronous generator mode locked in frequency to the jammer. If the strong 
jammer frequency difference is increased, the lock is broken at border M (Figure 
1 1.4) where a steady limiting cycle of another type is formed on the phase portrait 
(Figure 1 1.8), enclosing an unstable special point, and the character of the beating 

w2 R Jlr/2 2n 

Figure 11.6 The phase poltrait of the genemtor in a full synchronism mode. 



Autodyne Modes o f  Transi~!or Oscillators with Strong Interference 259 

A 

Figure 11.7 The phase portrait of the gencmtor in a beating mode at a small synchronous jammer 
stgnal amplitude. 

b 

Figure 11.8 The phase portrait of the generator in a beating mode with strong interference. 

mode will thus be changed. Similarly, it is possible to inspect changes of phase 
portraits for all possible combinations of parameters. 

The important question for uh, is whether the autodyne will have time during 
the target encounter to transition tc 1 the mode of locking to a synchronous jammer. 
For the answer to t h s  question we must calculate the transition time of synchro- 
nous oscillation termination, and this can be done by numerical analysis of (1 1.8) - 
(1 1.9) for various combinations c f parameters. Calculations have shown that the 
amplitude locking time (T;:  ) and phase locking time ( T," ) depend on the regen- 

eration factor SkIG,, of the generator, as shown in Figure 11.9 for different values 
of circuit Q-factor and for F = 0 4, 6 = 0.2. For small jamming (but within the 
loclung bandwidth) the amplitude of the synchronous oscillations is locked much 
faster than the phase. For examplc, with an initial phase of 45" the amplitude is 
locked in 110 periods of oscillation and the phase in 420 periods. 
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A 

Figure 11.9 Time of autodyne locking by a jammer for different regeneration factors and Q-factors. 

11.1.5 Bifurcational Diagrams of a Transistor Autodyne 

To understand how locking to an active jammer occurs in the autodyne mode, we 
study bifbrcational diagrams. The analysis shows that in the plane of parameters of 
input voltage F and frequency difference 6, for each value of anisochronism pa- 
rameter tana, the bifiucational diagrams appear as shown in Figures 11.10 and 
1 1.12. These establish on the plane (5,F) the areas corresponding qualitatively to 
different topological structures of variations on the integrated curve of system 
phase portraits. On bifurcational diagrams these areas, as distinct fiom the struc- 
ture of phase portraits, are specified by Roman numerals, and for each of these 
area types the special points are identified. 

For example, in area I in Figures 1 1.1 1 and 1 1.2 there are three special points 
on the phase portrait: a steady knot, a saddle, and an unstable knot (see Fig- 
ure 1 1.6). In area V (see Figure 11.11) there are an unstable focus and a steady 
limiting cycle in the system (see the phase portrait in Figure 11.8). Schematically, 
without taking into account some transitional areas of the bifixcational diagrams 
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Figure 11.10 Rough splitting of generator bifurcational diagram in an isochronous case on stable and 
unstable areas. 

(areas with Roman numbers greater than V in Figures 1 1.1 1 and 1 1.12), the half- 
plane of input voltage amplitude and its frequency difference is broken into two 
parts (see the areas G* and d in Figure 11.11). In area G* (above the bottom 
branches of borders M and Q) one globally steady steady-state synchronous mode 
is observed in the system to which there corresponds a steady balance condition (a 
special point of the knot or focus type). In area d (below the bottom branches of 
the borders) there is a beating mode corresponding to the steady limiting cycle on 
the phase plane a, cp. 

The border between areas G* and g i s  defined by lines Q and M. Actually, for 
any given F it defines the generator synchronism band. Borders M and Q are given 
as before by b1 = 0 and b2 = 0, where bl = d + e, and b2 = ed - bc are the factors of 
the characteristic equation (1 1.14) linearized around the steady-state condition 
ao,cpo of the equations: 

Here, q and yare increments of' the amplitude a and the phase cp respectively, 
e = 2ao - 1, b = -ao[& + (ao - 1) m a ] ,  c = [G + (ao - 1) tana]lao, and d = a0 - 1. 
In addition to the stability bordem M and Q on Figures 1 1.1 1 and 1 1.12 the border 
D = 0 is shown, where D is the discriminant of the characteristic equation (1 1.14). 
The border D = b12 - 4b2 = 0 defines the change of the knot points to focuses. 

In the presence of a small target signal 0 (@ << l), the analysis problem of 
equations (1 1.6) - (1 1.7) is equivalent to that of the effect of small periodic inter- 
ference with amplitude 0 and hquency 6, on the system of the "autonomous" 
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Figure 11.11 The fine picture of the bifurcational diagram for the isochronous case 

(i.e., not containing time in an obvious way) differential equations (1 1.6) - (1 1.7) 
of the synchronized oscillator. Therefore, for the answer to the question of behav- 
ior of (1 1.6) - (1 1.7) it is convenient to take advantage of some general results of 
the theory periodic interference to "autonomous" systems. 

As with (1 1.8) - (1 1.9) we can see that when plotted on the phase cylinder 
a,q, (1 1.6) - (1 1.7) are dissipative (the right-hand terms of (1 1.6) - (1 1.9) are lim- 
ited, and for large amplitudes a the derivative daldz < 0 for any cp). In other words, 
all integrated curves for large a eventually enter into the band 0 < a0 < 1 and none 
leave it. In this case it is possible to show that for (1 1.8) - (1 1.9) in the field of 
synchronism G* (Figure 1 1. lo), with small enough 0, there is a unique steady pe- 
riodic solution with a frequency equal to that of the autodyne input 6,. This solu- 
tion also represents a useful autodyne signal. The problem of this signal size defi- 
nition for different system mode parameters is therefore of interest. 



Aufodyne Modes of Transistor Oscillators with Strong Infeflerence 263 

X(IX) - SF. S, UK(UF); 
XI - UK, limit. cyda: 

XI1 Xlli - - UK. UK, cycle: S. S, UK, UF, lim;@ limit. cycle; 

IX. I XI 

A. 
Area around p. '6' 

Figure 11.12 The bifurcational dlagram of an autodyne for the anisochronous case. 

The appropriate unstable peric)dic variations of (1 1.8) - (1 1.9) correspond the 
unstable special points of (1 1.6) - ( 1 1.7). 

In the beating mode (area I fo f  Figure 1 1.1 l), the introduction of a small pe- 
riodic interfering voltage results in small changes in the course of the limiting cy- 
cle (the formation of an invariant integrated surface in the form of a bidimensional 
torus [4, 51). System variations in the beating mode for this case are almost peri- 
odic (when the ratio K of the period of interference 2~ l fi, to the period of varia- 

tion of the limiting cycle at cD = 0 is irrational), or are periodic (when K is ra- 
tional). In spectral language this litst case implies a multiplicity in the spectrum of 
beat frequencies approaching the fkequency a,. 

11.2 TRANSFER FACTOR OF AN AUTODYNE SUBJECT TO 
SYNCHRONOUS JAMMING 

Steady-state (steady and unstable ) periodic variations of (1 1.8) - (1 1.9) can be 
found as a first approximation, considering the periodic solutions of the linearized 
system (1 1.16). For simplification of the analysis we will enter, as is usual, a linear 
replacement of coordinates: x = y . Pq, where P = -cl@ + e) = -(p + 4 lb ,  andp is 
a root of the characteristic equation (11.14). Now (11.16) can be replaced by a 
pair of equations: 
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where for x = XI,Z it is necessary to use correspondingly p = plS2 and P = By 
direct integration from (I I .  l7), we obtain.. 

Taking into account that q = (xz - XI)/(PZ-PI) and y = (P~xI - PIXZ)/@~ - PI), 
it is easy to find the appropriate transfer factors for increments of amplitude and 
phase in relation to the amplitude cD of the reflected signal. For studying autodyne 
signal amplitudes ij of interest, let us enter, as earlier, the voltage transfer factor 
of the autodyne: 

Here it can be noted that the autodyne voltage transfer factor is a complex function 
of amplitude F and fiequency 6 of the synchrosignal, the oscillation amplitude of 
an independent mode Uo (i.e., a mode), the degree of anisochronism in an inde- 
pendent mode a ,  and the Doppler fiequency a,. 

After some difficult transformations, we finally obtain: 

Ku = 
A~ + B~ 

a0 (P, -PI [(b, -fib 1' + b3%] 
where 

Let us discuss in a general way the dependence of transfer factor KU on pa- 
rameters F, t, a, 6, . 

We notice again that the system of the equations (1 1.6) - (1 1.7) does not 
change if we put 6 = -6, tana = - tana, a, = --a,, and cp = -cp (i.e., the transfer 

factor of an autodyne does not depend on the sign of these parameters). Thus, 
transfer factor KU as function of parameters ~, tana,f i ,  is symmetric about the 

axis 6 = tana =a, = 0 .  In other words, in analysis of the dependence of K, on 

6, tana, a, we need examine only those areas where one of these parameters is 

positive, say, tana > 0. 
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The analysis of (1 1.20) shows that for 6,  + 0 in the case b, = 6; and 

bl + 0, the size of the autodyne sqnal transfer factor as a first approximation ap- 
proaches m f i t y  (i.e., in a vicinity of values b, = 6; and b ,  = 0 resonant phe- 

nomena similar to those describeld for similar systems are observed). In other 
words, a synchronized autodyne acts here as a resonant amplifier of the reflected 
target signal. It is not difficult to understand how valuable this property is for de- 
sign of systems with increased auto~dyne sensitivity. 

However, these resonant properties appear only in a vicinity of one point of 
parameter space, and the condition bl = 0 corresponds to the border M of the oscil- 
lations synchronism zones (for large input voltages F). 

The beating mode correspond5 to values bl < 0 when the interference appears 
at frequencies close to the synchmsignal, along with useful autodyne signal com- 
ponents. 

The physical sense of the point of full resonance is that, for bl = 0 at the point 
b, = 6; at the border of stability M, the period of variation in the limiting cycle 

T = 2x1 (on border M the limiting cycle originates &om a complex focus) is 

closely equal to the period of the jiunming T, = 2x1 6,  
For 6, = 0 we have: 

From this it follows that at the po3int of full resonance the following ratio for as- 
ymptotic value of the frequency difference applies: 

Dependence of the transfer factor on the synchronized autodyne voltage with 
frequency difference 5 at various F and tana were calculated on a computer and 
are given in Figures 1 1.13- 1 1.15. Continuous lines in the figures show dependence 
of K&) for steady periodic variations of system (1 1.8) - (1 1.9) (i.e., for useful 
autodyne signals). Dashed lines rorrespond to unstable periodic variations (i.e., 
those variations that appear with a reflected signal near unstable balance condi- 
tions of the synchronized oscillator). 

We will discuss, first of all, the results appropriate to the isochronous genera- 
tor (i.e., the case tana = 0). The same results apply, naturally, to the generator 
with an inertialess amplifymg device. 

The family of steady brancheq of resonant characteristics a(&) of the synchro- 
nized oscillator is shown in Figure 11.13(a). As these characteristics at a = 0 are 
symmetric with respect to 6, in thle figure is shown only the right half-plane. The 
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f tana = 0 

Figure 11.13 Amplitude-frequency characteristics (a), and dependence of autodyne voltage transfer 
factors (b) in the case of Erequency locking by a jammer (for tana = 0). 

point of the independent mode corresponds to a case F = 0, 6 = 0, a = 1. For this 
independent point from (1 1.20), we obtain: 

which in view of designations for g coincides with (10.47) of Chapter 10, with 
y = 0 for a case of fxed bias. With change of the mode Uo, the fimction g varies 
and Ku becomes maximal and equal l/(QDT) at g = 0. 

Upon introduction of the synchrosignal (F # 0) with zero fi-equency difference 
(5 = 0), we have: 
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and, since 6 = 0 in the synchronous mode, a > 1, then Kc1 falls in comparison with 
K,,, [see Figure 11.13(b)]. With increase of the frequency difference for variation 
on the resonant curve before cross mg border Q [on Figure 11.13(a)], the autodyne 
transfer factor increases [Figure 11.13(b)] up to the value KQ of the boundary 
mode appropriate to failure of stab~lity and transition to a beating mode: 

As we can see, KQ > K,,, (i.e., the autodyne voltage transfer factor may exceed K 
at the independent point). Dependence of K&) for small F ( F  < 0.325) appear as 
growing parabolas [Figure 1 1.13 (b')]. 

For F > 0.325 the stability of the steady-state synchronous mode is defined by 
border M [see Figure 11.13(a)], and the autodyne transfer factor KM at this border 
is: 

Figure 11.14 Dependence of autodyne vc ltage transfer factor on frequency difference in the areas of 
positive and negative frequency diffe~cnce of a loclung jamming signal. 
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For the marked value 

(i.e., the autodyne voltage transfer factor KU asymptotically approaches infi ty)  
[Figure 1 1.1 3(b)]. 

The family showing dependence of K&,) is not symmetric with respect to the 
axis 6 = 0, as we can see from Figure 11.14. Thus, for small positive 5, the value 
of Ku increases with increase in the frequency difference, while for negative 5 it 
falls ( a D  = const). In view of the axial symmetry in space of the parameters ({,aD, 
tana = 0), a similar phenomenon is observed for the family KU(nD) for 5 = const. 
By virtue of this, it appears possible in the synchronized autodyne to distinguish 
positive from negative Doppler frequencies QD (i.e., the direction of target motion 
in space) based on the amplitude of the autodyne signal and also to receive a use- 
ful signal proportional to the frequency difference 6 or to the Doppler frequency 
QD. 

For a case of the anisochronous generator the dependence of K&) becomes 
complicated and even more asymmetric (Figure 1 1.15). Thus the marked resonant 
character of curves for large synchrosignal amplitudes F is maintained. 

From consideration of the specified dependence K&,,nDF,a) it is possible to 
draw the following general conclusions. For small frequency differences 5 with 
respect to a line of maximum resonant characteristics the increase of synchro- 
signal amplitude always results in reduction of the autodyne voltage transfer factor 
KU in comparison with its value for the independent mode K,,,. Increasing the fre- 
quency difference 5 results either in growth or reduction of KU, depending upon 
values of 5, QD, and tana. For small F in this case, within the limits of the syn- 
chronism band where only the usehl autodyne signal exists, the change of KU may 
be insignificant. For large amplitudes F increasing 161 leads to resonant growth of 
KU that was discussed in detail above. Thus it can be seen that, unless set by very 
large Ku, it is possible to choose values of 5 and QD so that the operating point 
will be located far enough from the border M of the transition to the beating mode, 
such that the amplitude of synchronous oscillations will be close to the amplitude 
for the independent mode (a = I), and thus the objective in autodyne sensitivity 
will be provided in comparison with an independent autodyne [see, for example, 
the point P in Figure 1 1.13(b)]. This circumstance may have major practical value. 
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Figure 11.15 Dependence of autodyne voltage transfer factor on frequency difference in the case of 
an isochronous autodyne synchronized by a jammer. 

11.3 BIFURCATIONS OF PERIODIC VARIATIONS IN THE 
SYNCHRONIZED AUTODYNE 

As noted earlier, the area of resonant rise of the autodyne voltage transfer factor 
lies near the border of stability hl of synchronous oscillations of the generator. 
Thls circumstance causes interest In fhther analysis of fiontier areas of the bifur- 
cation diagrams of the transistor autodyne. The results derived earlier concern the 
existence of an autodyne signal (5teady-state periodic variation in the vicinity of 
the point of the synchronous mode) for any combination of parameters within the 
limits of the synchronism zone (F~gure 11. lo), in the case where the amplitude of 
the reflected signal is small enough. However, at the given value of in the 
vicinity of borders M and Q (and on the borders) of the bihrcation diagrams, the 
question of steady-state variations existing in the system and their stability remains 
open. 

As is known, for studying bifurcation phenomena it is not enough to examine 
only a linearized system [i.e., behavior of system (1 1.6) - (1 1.7) is determined by 
nonlinear terms]. For studying the possible bihcations we will expand the nonlin- 
ear terms of (1 1.6) - (1 1.7) in Taylor series in the vicinity of the condition of bal- 
ance of system (1 1.8) - ( 1  1.9). The equations for increments of amplitude and 

phase (increments q and y) take the form: 
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where P and Q are nonlinear forms of variables q and y with constant factors of 
the order k 2 2, and other designations correspond to (1 1.16). 

We will enter, as was done earlier in Section 1 1.2, a linear substitution of co- 
ordinates xlY2 = y + P1,2q, such that (1 1.25) can be replaced by the following: 

where factors of forms P' and Q' with order k 2 2 are easily defined through the 
appropriate factors of forms P and Q. 

As established earlier, (1 1.26) generally has in the vicinity of zero the peri- 
odic solution x l , ~  = Xlr2(r) with amplitude of the order Q,. Following the technique 
of the classical theory of bifurcation of periodic variations [6], we proceed from 
(1 1.26) to Poincark coordinates (those normal coordinates E,P in the vicinity of 
periodic system variation). We will enter the parameter 8 = RDT on a curve of 
steady-state periodic variation of the system and define a vector 

We have a tangential vector 

and two normal vectors 

Now it is possible to substitute coordinates in the following form: 
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where the factors before the normal variables E,P are periodic functions 8 and have 
the order a. Substituting (1 1.27) in (1 11.26), we obtain linear equations for the case 
P' = Q' = 0 describing the variables E and P with periodic factors. 

Due to reducibility of the given system, its multipliers (and consequently the 
solution of the question of variation stability) will not change with a linear substi- 
tution of coordinates. which we will now write as: 

For variables y,, y2 from (1 1.26), we obtain the following system of three 
equations: 

from whch we can see that in linear approximation (P' = Q' = 0) the bifurcational 
diagrams for (1 1.6) - (1 1.7) coincide with those for (1 1.8) - (1 1.9), since p,  and p, 
are the roots of the characteristic equation (1 1.14). 

For hrther constructions it is necessary to know the periodic solutions X,(8) 
and XZ(8). We will consider a pro~edure for obtaining the asymptotic decomposi- 
tion of (1 1.6) - (1 1.7), a periodic solution with the degree of parameter$ 

We shall search for the solution XI in the form 

where i = 1,2. Substituting the form of this solution in (1 1.26) and equating mem- 
bers of identical order in j: we obtain the following S i t e  system of linear non- 
uniform systems of differential equations with periodic right-hand parts, which 
may be solved consistently with use of the periodic solution of the previous equa- 
tion: 
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herei= 1,2,Pf1= P',andP'2=Q'. 
We will assume that an approximation of the solution &(B) of the order n is 

thus found: 

Having substituted this solution in (1 1.28), we find that in forms P', Q' all non- 
uniform components up to the order n inclusively will be reduced. Thus, in these 
forms all components except for the largest degrees of increments y will have vari- 
able factors. Then the linear system in view of members of the second order takes 
the form: 

d ~ i  
- dz - piyi = -2fXP (a i  y, + ai y,), 

from which it is possible to find the change of the order f with respect to the size of 
the characteristic parameters pi. For this purpose it is suffkient to present the h- 
damental system of solutions of (1 1.29) as: 

y.. = y.?+jy! 
Y r l  rl 

to substitute it in (1 1.29), and to find solutions of the resulting pair systems of dif- 
ferential equations. Further, having substituted in these solutions IF T = 2n/aD, we 
shall calculate a matrix of the system (1 1.29) and we define its multipliers pi. Then 
the characteristic parameters pi = L,piIT. 

For consideration of bifurcations, it is possible in a similar way to construct 
maps of the following in view of nonlinear members. Concrete realization of these 
procedures is extremely unwieldy and is unjustified in our problem as the basic 
necessary data can be obtained, being guided by general provisions of the bifurca- 
tions theory of periodic variations in space with the help of qualitative reasons. 
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From this development it is clear that the multipliers of the linearized system 
(1 1.28) for small f differ little from those of system (1 1.16) at f = 0. In other 
words, with introduction of a smaJl reflected signal the borders of stability M and 
Q of the bifurcation diagrams examined for system (1 1.8) - (1 1.9) undergo small 
shifts. By virtue of this, the qualitative character of borders is not generally 
changed. On border Q for an output from a synchronism zone there is a merging of 
two invariant periodic curves of system (1 1.6) - (1 1.7), one steady and one saddle- 
shaped, along with formation of complex periodic variation in the double beating 
mode (for small F), covering the phase cylinder. 

Border M corresponds to a change of stability of the steady-state periodic 
variation curve with Doppler frequency RD. Thus, as this border is a safe one, a 
steady two-dimensional invariant torus is established on it, consisting entirely of 
steady spiral phase curves for irrational values of the number of rotations K. With 
change of parameters the number of rotations on th s  torus varies, generally speak- 
ing, so it adopts irrational or rational values when the separate steady phase curves 
are plotted on the torus. Correspo~nding generally to border M there is a passage of 
multiplier pairs through an individual circle. The case in which both multipliers 
p1,2 are equal to 1 corresponds in our problem to a resonant point of a curve M, 

where &=n, (i .e. ,)p,. ,=exp+j2x i c-1 b 2 / Q ,  = l .  

In the vicinity of the resonant point there may be rather complex reorganiza- 
tions of system variation structure resulting from resonant excitation of amplitude 
oscillations with frequencies that are multiples of a,. The concrete character of 
the bifurcations depends here significantly on the type of local nonlinearity. Solu- 
tion of these bifurcations involves significant difficulties and is not necessary for 
us, as for small Q the zone of resonant reorganizations is so small. 

Similarly, it is possible to inspect the bifurcations in transition areas of the bi- 
furcational diagrams (in areas VI-VIII, XII-XI11 of Figures 1 1.1 1 and 1 1.12). 

So, in summary it is possible to ascertain that as a fust approximation, the 
zone of existence of a useful autodyne signal in a synchronized autodyne (in the 
absence of adjacent interference components in the spectrum) coincides with the 
area of existence of steady synchronous oscillations of the synchronized oscillator. 
Outside the specified area in the system, the mode of complex beating is observed 
when in a spectrum of an autodyne signal there are the parasitic components de- 
pendent on frequency and amplitude of an active synchronous jammer. The char- 
acter of the transition from "synchronism" to the beating mode and back is de- 
fined, fust of all, by the changes occurring in the synchronized system. 
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