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Preface

The material offered to readers of this book is based on literature sources and on a
small part of the long-term research works of the authors in the area of autodynes
and frequency-modulated continuous-wave (FMCW) radar. Most of the material
was presented at the Radio Engineering Faculty of the Moscow Power Engineering
Institute (Technical University) MPEI in lecture courses on “FMCW Radar,”
“Theory of Signal Processing,” “Short-Range Radar Systems,” “Transistor Auto-
dynes,” “Oscillation Theory in Radio Engineering,” and “Oscillation Stability,”
and also at lectures, seminars, and scientific and technical conferences at industrial
enterprises.

We think that this book may be useful to students and postgraduate students of
the appropriate radio engineering specialties, experts (engineers) in the field of
radar who want to get acquainted with or are seriously engaged in the theory and
development of FMCW radar and autodynes. We hope that it will be interesting to
scientific officers and teachers of technical universities - specific experts in these
subjects.

Is it possible to design a radar using this book? Our long-term experience in
teamwork with industry enables us to give a definite negative answer. This book
contains only the fundamentals of the theory of FMCW radar and autodynes, while
for their design it is necessary to have a set of additional data that is absent from
this book, and we are not going 1o include it. At the same time, it is obvious that
without knowing the fundamentals, it is, in general, impossible to design anything,
and studying these fundamentals 15 necessary in any case.

The book consists of two parts. Part I has been written by Dr. I. Komarov, and
Part IT by Dr. S. Smolskiy. Auxiliary sections of the book have been prepared by
the authors jointly.

Part I contains the fundamental theory of short-range FMCW radar, while
Part II covers the theory of radiating autodynes. At first sight, such a combination
may seem strange, but we should not jump to conclusions. We note that radiating
autodynes, by the principle of their operation, may work only within the structure

xiii
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of radars, and most effectively in short-range FMCW radars. The experts on
FMCW radar, as a rule, are not familiar with autodyne theory. If they apply an
autodyne for development of a radar they are interested only in its technical char-
acteristics rather than in theoretical considerations. Experts in autodynes often
know little or nothing about FMCW radar theory and methods of signal process-
ing. That is why the simple and unexpected idea came to us: why not present mate-
rials on these two subjects in one book devoted to the basics of FMCW radar?
Then the expert interested in FMCW radar may get acquainted with autodyne the-
ory and the expert in autodynes can correspondingly get acquainted with the the-
ory of FMCW radar. The reader will judge how effective this combination has
been.

During preparation of the book we followed to a certain degree an aphorism
of Bertrand Russell: “A book can be either clear, or strict, but it is impossible to
combine both these requirements.” Therefore, in Part I preference is given to clar-
ity, but not to the detriment of rigor, and in Part II the preference is given to rigor,
but not to the detriment of clarity, or so it seems to us.

The material of Part I is written according to the principle “from simple to
more complex.” Each chapter is like a step on a ladder, on which the reader rises.
Chapter 1 is intended for those readers who may have heard of FMCW radars, but
have no clear idea about their performance or areas of application. In the begin-
ning of the chapter a brief history of the origin and further development of FMCW
radar is given. Then examples of FMCW radar applications are given. Some pre-
sent examples are well known: first, radio altimeters and meters of level of liquid
or powderlike products in closed tanks. Other examples include possible applica-
tions of FMCW radar such as navigational radar, precision range meters for fixed
or slowly moving targets, meters of very small motions, instruments for measuring
minute changes of range (hundredths of a millimeter) as noncontact meters of vi-
brations and pressure of a gas or liquid, and others.

Chapter 2 is the basis for all further material of Part I. The basic block dia-
grams of FMCW radar are considered and expressions for transmitted, reflected,
and converted signals are deduced. The last term refers to the signal at the output
of the RF mixer. In other literature it is frequently called an intermediate fre-
quency signal (by analogy to the intermediate frequency signal in a superhetero-
dyne receiver), and also the range measuring signal. A feature of the analysis
given in this chapter is that the converted signal is considered as the product of the
current difference of the phases, instead of as a product of the difference of instan-
taneous frequencies of transmitted and reflected signals. This method of analysis is
exact and general, and it enables us to obtain most simply the necessary relation-
ships, in particular, the basic relationships for the spectrum of the converted signal.
It also allows us to explain very simply some features of the converted signal. If
desired or necessary it is easy to proceed to frequency interpretations.

The material in Chapter 2 receives further development in Chapter 3, where
parameters and characteristics of the converted signal are examined for the most
widely used types of periodic frequency modulation: sinusoidal, double sinusoidal,
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and various types of linear modulation: symmetrical, asymmetrical, and nonisosce-
les sawtooth. The greatest attention is given to the analysis of the converted signal
with asymmetrical sawtooth modulation because this modulation in many cases
obtains the best characteristics of FMCW radar.

Because modern electronic component technology makes possible the appli-
cation of a frequency synthesizer as an FM oscillator, the features of the converted
signal for discrete linear (stepped) modulation are examined in this chapter. At the
end of the chapter we estimate the: influence on parameters of the converted signal
of nonlinearity in the transmitter modulation characteristic.

Chapters 2 and 3 form the basis for the subsequent development.

In Chapter 4 we consider so-called integrated methods of converted signal
processing. The term “integrated”” may be not absolutely successful, but no other
term has been devised. Integrated methods of converted signal processing are de-
fined to be those in which all signal parameters (i.e., amplitude, frequency, and
phase) are utilized for processing. The possible methods of signal processing are
first briefly considered. A significant part of the material in this chapter (~20%) is
devoted to consideration of the influence on radar receiver operation of parasitic
amplitude modulation of the transmitted signal and several adequately effective
ways to reduce this influence. Then we consider methods of stabilization of fre-
quency deviation and linearization of the transmitter modulation characteristic. In
Section 4.4, “Frequency Processing of the Converted Signal,” we consider long-
known processing methods as well as rather new methods. Descriptions of the ear-
lier methods are given for completeness and to avoid sending the reader to old
references that may be almost inaccessible. Here we describe the following: the
method of range measurement by calculation of the number of zeros of the con-
verted signal for the modulation period, and the method of using the converted
signal frequency deviation with smusoidal modulation. In the following section we
consider methods of range measurement based on measurement of the converted
signal’s instantaneous frequency, the fixing of this frequency and of the converted
signal’s frequency deviation. The chapter concludes with a section in which we
analyze opportunities of range measurement by measurement of the converted
signal’s phase shift during the modulation period. We show that this approach al-
lows us to measure range with a margin of error no more than tenths of one per-
cent, using technically achievable deviations of transmitted signal frequency.

In Chapter 5, we consider methods of converted signal processing based on
exploiting the characteristics and parameters of its spectrum. We have seen from
long-term experience of discussing these questions with colleagues and students,
the greatest difficulty in studying this material is the necessity of representing a
spectral picture in frequency-range coordinates. For this reason, we consider first
the dependence of separate spectral components on range and then the three-
dimensional spectral picture in voltage-frequency-range coordinates. Further, on
the basis of this analysis, theoretical and real range resolutions are calculated. In
development of this question, the range resolution is calculated for application of
weighted signal processing, and the physical essence of weighted processing is
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explained in detail. The natural continuation of this material is radar scan of range.
Various ways of creating the physical spectrum analyzer of the converted signal,
and such important parameters of the analyzer as minimal necessary analysis time,
are considered. As in Chapter 4, we describe one of the possible processing meth-
ods with which the normal operation of the receiver is ensured even when the
parasitic amplitude modulation signal is larger than the converted signal. At the
end of the chapter, various methods of processing the separate spectral compo-
nents of the converted signal are presented. Here it is worth noticing the sections
in which we discuss opportunities for applying an FM signal instead of multi-
frequency signals, and methods of using phase relationships.

Part 1I is devoted first to simple and compact RF devices, called autodynes,
self-mixing oscillators, or self-generating mixers by different authors and different
scientific schools. In essence, such a cascade is a very complex device consisting
of a self-oscillatory system connected by a reciprocal circuit to a transceiving an-
tenna. This RF cascade combines the functions of generating an RF transmission
with specific characteristics, radiating it from the antenna, receiving the signal
reflected from the target (the measured object) to the same antenna, and generating
the response to this time-delayed reflected signal, whose amplitude may be small
or large.

The difficulties of combining all these functions, and the essentially nonlinear
mode of autodyne operation necessary for generation of the transmission and pro-
cessing of the converted reflected signal, together with the complexity of active
semiconductor RF elements and microwave oscillatory systems, also introduce
complexity in the theoretical analysis of these devices and the significant interest
of researchers in them. The resulting set of dissertations on this subject is pro-
tected now (at least, in Russia). Engineers are interested in autodynes because
these devices are simple to produce, extremely small-sized and cheap for mass
production, and require only one antenna without expensive microwave duplexing
devices. Also, as nonlinear devices, autodynes allow us to offer nonstandard cir-
cuit choices, for example, distributed autodynes with power addition, noise-proof
autodynes with various types of frequency modulation, autodynes that are well
matched to nonstandard antennas, and many others.

What method of description of autodyne FMCW radar characteristics is used
in Part I1?

Very often in Russian and Western scientific literature the researchers try a
simple approach: to find very simple treatments of autodyne processes by resorting
to already generated concepts from the theory of other devices. It is possible to
find many such examples. One of the first (pioneer) publications on autodynes by
American authors R. D. Huntoon and B. G. Miller (Electronics, November 1945)
examines the autodyne signal as a reaction to varying loading. Other models of the
autodyne sometimes postulate a mixer with fixed heterodyne signal amplitude or a
synchronized oscillator transferred in the beating mode. Thus, it is possible to try
to explain the elementary processes of an autodyne, but as soon as real problems
and practical questions are addressed, these treatments start to reveal serious
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(sometimes basic) mistakes. It is necessary, even speaking about the fundamentals
of autodyne system operation, to address complex models and to climb into a theo-
retical jungle. We recollect that nne known Russian expert in radio engineering,
during the defense of a dissertation, slightly paraphrased the words of philosophers
about the electron to joke: “The autodyne is as inexhaustible as the atom.” It seems
to us that in this joke there is a serious element of truth.

Nevertheless, we have decided not to hesitate because of such complexities, in
order that the reader realize that simple explanations cannot simply be dismissed.
If there is a problem in overlooking a complex question (for example, dynamic
properties, speed of resynchronization, transients of the autodyne signal with fre-
quency modulation, nonlinear distortions in FM, etc.), it is necessary to prepare for
serious slow work with difficult mathematical literature, with complex computer
modeling packages, complex microwave experimental equipment, and all other
“amenities” of modern engineering practice.

In Chapter 6 (the first chapter of Part II) we describe the method of symboli-
cal abbreviated equations, which is widely used by Russian scientists, and which
allows us easily and elegantly to analyze various processes in single-frequency
self-oscillatory systems (systems without FM). To prepare the Western reader for
this method the relatively simple case of the single-tuned oscillator is first consid-
ered, for which it is shown how to obtain the initial simplified (so-called “abbrevi-
ated”) equations. A strict substantiation of the method is presented, and then the
general abbreviated equations, the equations of the stationary mode, and the gen-
eral characteristic equation describing local stability of oscillations are determined.
Different examples are analyzed: the oscillator with fixed and automatic bias, the
analysis of stationary modes with usual and dynamic oscillatory characteristics, the
method of usual and dynamic hodographs, cases of soft and rigid excitation of
self-oscillations are considered, and stability of modes and transients in the phase
plane are analyzed. The general equations are obtained with sufficiently general
preconditions on structure of the selective system and autobias circuits, and also
on characteristics of inertial active elements. Consideration is given to the case of
FM absence, and as far as is known to us, consideration of self-oscillatory systems
by members of the American scientific schools is not usually carried out in a simi-
lar way.

Chapter 7 is devoted to absolutely new and original theoretical material: ap-
plication of the symbolical abbreviated equation method to systems with variable
parameters, in this case to autodyne systems with FM as used in FMCW radar. At
first the previous general abbreviated equations are applied to the case of con-
trolled multiport active elements, and then the case of frequency modulation is
considered. A proven procedure for abbreviation of the equations and fast deriva-
tion of the equations of specific systems is offered for different types of modula-
tion. For simplification of understanding, simple and more complex examples are
considered with sine wave, binary, and triangular (symmetric and asymmetrical)
types of frequency modulation.
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Part I repeatedly emphasizes that the parasitic amplitude modulation (PAM)
that always accompanies frequency modulation, not only in nonlinear systems but
also in linear selective systems, is quite harmful to FMCW operation. In Chapter 8
the question of PAM signal definition is considered in detail. We first consider the
case of the FM oscillator for discrete frequency tuning, when there is a connection
between oscillation amplitude and the mode for different variants of oscillator
circuits, and then the case of modulation. We determine the parameters of the FM
oscillator mode from the solution of the differential equations and then the in-
phase and quadrature PAM components. The dependence of the PAM factor on
the mode, on modulation frequency, and on circuit parameters of the oscillator are
derived. The cases of frequency control with varicaps, both with smooth and sharp
P-N junctions, are separately analyzed.

Chapter 9 is devoted to the important practical question of modulation charac-
teristic nonlinearity in the FM oscillator and to the issue of its linearization. The
case of large change of frequency is examined first for smooth and sharp varicaps,
and the dependence of modulation characteristic nonlinearity upon the factor of
frequency overlapping is considered, first without and then with high-frequency
voltage on the varicap. Nonlinear distortions of the modulating function are ana-
lyzed, and factors of nonlinear distortions on the second and third harmonics are
determined. Methods of linearizing the modulation characteristic using diode-
resistive circuits, circuits with voltage detection, diode-transistor compensating
circuits, and circuits of modulators with detuned circuits are considered. A tech-
nique of engineering calculation of compensating circuits is developed.

In Chapter 10, the basic theoretical chapter of autodyne process analysis, we
derive the abbreviated equations for an autodyne with autobias, in which the auto-
dyne signal may be described as due to autodyne self-detecting properties (in an
autobias chain), or due to peak detection. The abbreviated equations are linearized
for the case of a weak reflected signal and the linearized equivalent circuits of the
autodyne are discussed. Autodyne transfer factors in voltage and current are de-
termined, describing the effectiveness of transformation of the reflected signal into
a useful autodyne signal. The form and spectral structure of the useful detected
signal and the RF autodyne signal are calculated. The cases of different types of
frequency modulation are separately considered. The dependence of autodyne
sensitivity upon its mode and circuit parameters are derived, and questions of
mode optimization are discussed for low and high frequencies of the chosen
transistor.

By studying the material of this chapter, the reader will master a technique for
approaching the analysis of a specific autodyne circuit and for defining the sensi-
tivity and potential of an FM radar. He or she will also understand the connection
and necessary measures for simultaneous maintenance of high autodyne sensitiv-
ity, reserve of mode stability, necessary autodyne output power, and required pa-
rameters of frequency modulation.

Chapter 11 is devoted to the specific and complex question of analysis of
autodyne behavior in the presence of a large synchronizing signal (the useful
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signal synchronizing a chain of interconnected autodynes, or a harmful interfering
signal at nearby frequency). The presence of this material in a book devoted to
fundamentals of FMCW radar can be explained in the following way. We wanted
to show that the general approach to autodyne equations may be used for the solu-
tion of complicated problems. In this chapter fine and “superfine” methods of
nonlinear fluctuation theory are used for consideration of the problem, allowing us
to describe the large variety of modes and again to obtain closed formulas for cal-
culation and analysis of autodyne transfer factors. These methods include synchro-
nization theory, bifurcation theory, analysis of dynamic systems behavior on cy-
lindrical phase space, simultaneous influence on autodynes of the detuned syn-
chronizing signal and a reflected signal, questions of maintenance not only of lo-
cal, but also of global stability, the analysis of special points of the second order
and their bifurcations, invariant integrated, and biphase surfaces. It appears that
the usual assumption of failure of autodyne operation resulting from locking by
strong interference is wrong: with a reasonable choice of mode it is possible not
only to keep autodyne mode stability, but also to even increase sensitivity.

This chapter will be complex for the unprepared reader. It can be omitted
when studying the fundamentals of FMCW radar. If the reader wishes to get seri-
ously into autodyne subjects, the chapter will help guide him or her to become
interested in a surprising and fruitful direction that may open the door to a new
world of deep nonlinear phenomena.

Certainly, many questions have not found reflection in the book. From among
such questions applicable to Part I, we do not discuss the theory of short-range
FMCW radar operation with real (i.e., fluctuating) signals, noise and code modula-
tions, digital processing of the converted signal, questions of short-range FMCW
radar design, and a number of others. In Part II such questions as push-pull and
ring autodynes, autodynes with stabilization of sensitivity, autodynes with delay
lines, autodynes with axisymmetric antennas and antenna arrays, multielement
autodynes with power addition in space, laser autodynes, and many other issues
are not mentioned. It is obvious that discussion of all these questions in one book
is completely unrealistic.

Perhaps the reader will be surprised at the scarcity of the references listed,
given the large interest of scientists and engineers in this field. During preparation
of the manuscript we met some difficulties with formation of this list. The fact is
that, on the one hand, we tried to refer as little as possible to Russian texts and
those of the former USSR, as they are seldom translated into other languages and
are inaccessible to the Western rzader. On the other hand, for obvious reasons, the
Western editions are remote from us, and it is very difficult for us to choose really
pioneering works from numerous articles and reports. It seems to us that the West-
emn reader who is seriously interested in this problem will find without effort the
literature accessible through common information bases and can skillfully compare
approaches and results of different authors.

More than 30 years of scientific research in described directions was per-
formed by us, in close contact but in different departments of the Moscow Power
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Engineering Institute (Technical University). In the Radio Receiver Department,
Dr. Komarov supervised a large group of researchers, teachers, postgraduate stu-
dents, and students involved in the problems of analysis and synthesis of FMCW
radar structures, of theory and practical devices of signal processing, description
of signals from interference, and so forth. Autodyne development was carried out
in the Radio Transmitter Department under Dr. Smolskiy, supervising an equally
large team of researchers, postgraduate students, and students. We also worked
during all these years in close contact with many scientific research institutes and
industrial design offices. Thus, the results obtained are the work of many, many
people, and so it is completely impossible to list all their names. Unfortunately,
many of them are already not with us, and we try to do justice to their memory. To
all colleagues who are in good health, the authors express great gratitude for long
years of teamwork.

S. M. Smolskiy would like to express profound gratitude to the main teacher
and the supervisor of his studies since his student years: Dr. V. M. Bogachev, his
instructor and friend on many scientific and vital questions, for all the advice given
during 35 years of friendship and cooperation, and for all skills (that are actively
used today), transferred by working with the youth. It is also a pleasure to recollect
years of teamwork with colleagues and pupils Dr. V. G. Lysenko, Dr. S. A. Mo-
rosanov, Dr. S. L. Artemenkov, Dr. V. A. Ivanov, Dr. S. N. Bikkenin, Dr. L. N,
Laut, and M. A. Solov’ev.

During preparation of the book, invaluable help to the authors was rendered
by scientific editor Mr. David K. Barton, whom we thank with our hearts and hope
that we have found in him not simply a highly skilled colleague but a friend as
well. He has done a huge amount of work, in essence having translated our English
text “with a significant Russian accent” into normal technical English, helped us to
find the correct terms for the present moment, and asked questions that have un-
doubtedly improved the text.

We also offer heartfelt thanks to the employees of Artech House with whom
we worked, for their extremely benevolent, attentive, and kind attitude to us.

We would be delighted if interested readers would express, through Artech
House or directly to us, their questions, remarks, and recommendations for im-
provement of the book. We firmly believe that any scientific work never happens
to be entirely completed. We imagine that the book is similar to an unfinished
house: you look to the right at an empty window - one direction for development,
on the left at an aperture for a door - another no less interesting picture! You see
the best memory of the authors’ work before you, and simultaneously express
gratitude to them - studying their works and development in different directions.

And we, as all authors of completed books, shall wait eagerly for this
development.
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Chapter 1

Introduction to Frequency-Modulated
Continuous-Wave Radar

1.1 BRIEF HISTORY

The idea of using FM signals for ranging to a reflecting object (a target) is very
old. These signals were used as long ago as the 1920s for ionospheric research.
The practical application of frequ:ncy-modulated continuous-wave (FMCW) radar
started in 1928, when J. O. Bentley filed the American patent [1] on an “airplane
altitude indicating system.”

Bentley’s radar was very simple (Figure 1.1). The transmitter frequency is
modulated with a triangular waveform (Figure 1.2), using an electric motor rotat-
ing an adjustable capacitor. The transmitted energy is radiated toward the surface.
Because the isolation between transmitting and receiving antennas is limited, a
small fraction of the transmitted energy (the direct signal) enters the receiving an-
tenna along with the signal reflected from the surface. The receiver input circuit is
tuned to match, at any moment of time, the frequency of the transmitter. The
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Figure 1.1  Block diagram of radio altimeter by Bentley.
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Figure 1.2 Instantaneous frequency of the radiated and reflected signals.

reflected signal frequency differs slightly from that of the transmission (Fig-
ure 1.2), being delayed by a time t that is constant except for short intervals just
after reversals of the slope of the transmitted frequency, which occur at times

(2n+ 1)]:1 {20+ 1)%+ 7 ,wheren=0,1,2, ...

The difference is much less than the passband of the receiver input circuit, which
therefore accepts the reflected signal along with the transmitter leakage. The dif-
ference frequency Q between these signals is formed by interaction of the two sig-
nals in a nonlinear receiver element (mixer or detector). The frequency Q is di-
rectly proportional to the delay time (i.c., to range from the aircraft to the surface),
except for the short time intervals following slope reversal. Measurement of Q
determines the aircraft altitude.

Industrial applications of this idea began only at the end of the 1930s, when
the ultrahigh-frequency band was exploited. Mechanical frequency agility of the
transmitter provided the necessary frequency deviation (~20 to 30 MHz). Signal
processing after the mixer was performed in a very low-frequency band. The radar
illustrated is very simple and hence reliable. This was the basic reason for wide
application of FMCW radio altimeters in military aircraft before WW 11, and sub-
sequently in civil aircraft. At present a low-altitude FMCW radio altimeter is a
necessary element of the avionics suite for most military and civil aircraft, and also
for space vehicles during landing.

Most of the theoretical works on FMCW radar were published during a period
from the late 1940s to the early 1960s [2-8]. In addition to radio altimetry, FMCW
radars have been developed for applications such as merchant marine navigation,

The theory and engineering of pulse radar began to develop soon after the end
of the 1930s. Most of the subsequent development in radar engineering was in
pulse radars, which met most requirements of military and civil engineering and
industrial applications. The FMCW radar art has found itself in the shadow of
pulse radar. It has been largely “forgotten,” and has been “recoliected” only when
requirements have appeared to measure very small ranges, from fractions of a me-
ter to a few meters. Primary examples in military engineering are proximity fuzes
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for artillery shells and missiles, and systems for detection of mobile targets. Major
advances have been supported by development of the technology base in centime-
ter and millimeter waves and microelectronics.

FMCW radar has been developed and applied on a large scale in civil industry
for measurement of levels of liquid, paste, or powder-like products in closed tanks.
Such equipment is termed “level-measuring radar.”

1.2 EXAMPLES OF USE OF FMCW RADAR

Before considering examples of FMCW radar applications, we will note the basic
features of these radars. These are:

s Ability to measure small and very small ranges to the target, minimal
measured range being coniparable to the transmitted wavelength;

e  Ability to measure simultaneously the target range and its relative speed;

e Small error of range measurement, which with some processing methods is
within hundredths or even thousandths of a percent;

e  Ability to measure small range changes (less than fractions of a percent of
the wavelength);

e Ability to use various types of indicators (panoramic, plan-position etc.);

e Signal processing after mixing is performed in a range of frequencies,
commensurable with the modulation frequency (i.e., in a frequency band
from hundreds of hertz up to hundreds of kilohertz), considerably simpli-
fying realization of the processing circuits;

e Safety from absence of pulse radiation;

e Compactness, the dimensions of a radar using modern technology being
determined, basically, by the dimensions of the microwave block;

e Small weight and small energy consumption due to absence of high circuit
voltages.

We should note in particular one: more feature: the possible application of ultra-
Sonic transmissions.

We will now consider several examples of FMCW radar applications.

1.2.1 Radio Altimeters

The application of FMCW radars as radio altimeters is well known in the radar
community. There is a great deal of literature in which the theory of operation and
practice for radio altimeters is discussed, and hence there is no need to dwell fur-
ther on this issue.
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1.2.2  Level-Measuring Radar

The device works in the following way. The entire device or its transceiver an-
tenna is placed on the cover of the tank (Figure 1.3). The antenna beamwidth does
not usually exceed 10 to 12 degrees. The antenna beam is pointed vertically to-
ward the surface of the tank contents to which the range R is measured. As the
range H from the antenna to the bottom of the tank is known, the level is deter-
mined as L = H —R.

The maximum measured range is the height of the tank, which in most cases
does not exceed 50m (e.g., in oil tankers). The minimal measuring range R is
about 0.5 to 1.0m. The frequency bands J or K are typically used to obtain a pen-
cil-beam antenna pattern. The most important parameter in a level-measuring radar
is the range error. For most devices the rms error is within fractions of one percent
to a few percent of R. In some cases measurement is required in small-volume
tanks (with small heights). In these cases, R does not exceed one or two meters,
and it is most expedient to apply ultrasonic level-measuring radar.

In some manufacturing processes there is a two-layer liquid in the tank for
which it is necessary to know only the level (layer thickness) of the lower liquid
(for example, to pour out the bottom liquid and leave the top liquid). This problem
can be solved with ultrasonic radar (Figure 1.4). The ultrasonic transducer is lo-
cated on the bottom of the tank with its narrow beam directed vertically upwards.
The radiated signal is reflected from the boundary between the two liquids, and
thus the thickness of the bottom layer is measured. Part of the signal, of course,
penetrates through the boundary and is reflected from the top surface of the liquid
or gas (or air), passing again through the boundary of the liquids and entering the
receiver. As a rule, however, this signal is strongly attenuated and easily filtered.

1.2.3  Navigational Radar

FMCW radar can be applied to navigation radars with ranges up to several kilome-
ters. It should not be supposed that the operating range of FMCW radar is inher-
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Figure 1.4 Ultrasonic radar 1n a tank with a two-layer liquid.

ently limited to several kilometers, as longer ranges are entirely feasible even
though pulse radars are generally used in such cases. FMCW radar is most useful
at short ranges, from tens to hundieds of meters (e.g., for surveillance of the sea or
large river ports when vessels arrive under conditions of bad visibility). FMCW
radar can be used not only to search the water surface of the port but also to mea-
sure range and relative speed of any targets within the port.

The ability to measure very short ranges, those within fractions of a meter,
makes possible realization of one¢ more very important function. When a vessel
makes fast to the wall of a quay the captain may not be able to observe the range
between the hull and the wall, especially with large sea-going ships. This greatly
complicates docking. The same problem arises in passing through a lock chamber,
where he must control not only the distance from his hull to the lock chamber, but
also distance to the next vessel. This problem is easily solved by placing FMCW
radar at the bow and stern for measurement of distance to the wall. The small
size, simplicity, and economy of FMCW radars suit them to these problems.

1.2.4  Vehicle Collision Warning Systems
In the past several years vehicle collision wamning systems (VCWS) have been

developed in response to the substantial traffic growth in cities and on motorways.
The design of these systems is very complex and difficult. For a brief description

Front radar Side mirror Q Tail radar

.............

Figure 1.5 Coverage zones of vehicle collision warning system.
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of one possible VCWS, we refer to Figure 1.5. The shading designates operating
ranges of this system. These ranges are covered by four radars: front, tail, and two
side mirrors. The front radar has a pencil-beam pattern several degrees wide. The
range of this radar is about 300m, with a minimal range of 20 to 30 cm. The radar
provides continuous measurement of range and relative velocity for targets ahead
of the vehicle. This data appears on the display and in a computer that gives a
danger signal based on this data, and if necessary activates the brake system.

The tail radar carries out the same operations as the front radar, but in a circu-
lar operating zone directly behind the automobile at ranges from ~ 20 or 30 ¢cm to
a maximum of ~2 to 3m. This operating zone is used for parking and backing.

The operating range of the side-mirror radar is ~10m, with a width of 10 to 20
degrees, depending on the design of the automobile. This radar gives a danger
signal when the next automobile is within its coverage.

Comparing these VCWS specifications and the features of FMCW radars
listed above, it is clear that these radars offer a good approach for VCWS.

1.2.5  Precision Range Meter for Fixed Targets

Methods of precision range measurement have long been known. Multifrequency
CW radars using phase processing of the reflected signal are applied for this pur-
pose. These radars allow us to measure range up to tens of kilometers with a rela-
tive error of the order 10° to 10~°. Multifrequency CW radars have already been
applied in a geodesy [7]. However, there is a disadvantage to this type of CW ra-
dar: the impossibility of range measurement to fixed targets. To measure range to a
fixed target we must install on it an active reflector to simulate a Doppler shift, but
this is inconvenient and not always possible. FMCW radar is free from this disad-
vantage [9], appreciably expanding its area of application, as shown by the follow-
ing examples.

For measurements in a triangulation network it is not currently necessary to
use active reflectors. It is sufficient to install passive reflectors (e.g., comer reflec-
tors) at the appropriate points of this network.

Another example is monitoring the behavior of glaciers and snow avalanches
in mountains. At present this monitoring is performed by theodolites. The defi-
ciencies of this method are obvious: need for special crews for installation and
operation; maintenance of these crews with appropriate housing and supplies; abil-
ity to make measurements only under conditions of good visibility; and the addi-
tional calculations required.

Using FMCW radar this task can be solved much more easily. On the surface
of a glacier (or snow avalanche) we install comer reflectors or drop them from a
helicopter or by parachute from an aircraft. An FMCW radar is installed on a slope
or top of the next mountain to observe the glacier. This radar continuously or peri-
odically measures range to the appropriate comner reflector. Thus it is possible to
obtain a record of dynamics (changes) of glacier motion or snow avalanche. The
radar can work automatically, data being transferred by radio circuit. Hence, there
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is no necessity to mount expeditions. This substantially simplifies and reduces the
price of monitoring glaciers and snow avalanches.

FMCW radars can also be used to measure displacement of walls of high
buildings, towers, and other structures.

1.2.6 Measurement of Very Small Motions

A typical example of small motion measurement is the observation of vibrations of
various components of machines and mechanisms. The most useful device for such
measurements is contactness, meaning that there is no physical contact between
the device and the vibrating component. Several devices for contactness vibration
measurement are known, but all have one or another disadvantage (e.g., inability
to perform measurement at high tetnperatures or in aggressive environments).

Attempts to apply continuous microwave signals for these measurements are
also known. In this case the narrow beam of a microwave radiation with frequency
o is radiated toward a vibrating element and the phase difference between radiated
and reflected signals is measured. If the delay of the reflected signal is 1, this
phase difference is ot. Then a reflected signal phase shift of 360° corresponds to a
range change of A/2. For example, if A = 7.2 mm, then a 10-pm change produces
1° of phase shift. This permits us to measure very small range changes.

As methods of direct measurement of phase differences of microwave signals
are unknown, various indirect ways for such measurement have been developed.
The resulting devices for vibration measurement using microwave signals are very
complex and have not been widelv applied. FMCW radar simply solves this prob-
lem [10]. The fact is that the information on the phase angle @t appears in the
low-frequency signal at the mixer output of the receiver. This considerably simpli-
fies measurement of the phase angle wt with the usual analog or digital phase de-
tector. It is obvious that one area of application for FMCW radar is for measure-
ment.

The list of examples of application of radars can be continued. However, from
this list it can be seen that the area of application of these radars is wide. In the
following chapters we will call FMCW radar short range radar (SRR) for brevity.
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Chapter 2

Basic Theory of Short-Range FM Radar

2.1 PRINCIPLE OF OPERATION AND BASIC BLOCK
DIAGRAM OF FM RADAR

The principle of operation of pulse radar is based on time separation between the
transmitted and reflected signal and measurement of the time interval between
transmitted and received puises. In FM radar, because continuous radiation is
used, separation of transmitted and reflected signals in time is impossible. Hence,
reception of information about the range to a target is possible only when the
transmission is modulated in amplitude or phase.

Amplitude modulation is not used because it is practically impossible to select
the reflected signal against the interfering background of the transmission, the re-
flected signal from targets even a few meters from the radar being some tens of
decibels less than the transmitted signal. Thus the only means to determine the
reflected signal delay relative to the transmission is on the basis of the phase dif-
ference of these angular modulated signals. This operation can be easily carried
out by multiplication of transmitted and reflected signals. After multiplication, two
signals are formed, one with a phase equal to the difference of phases of the multi-
plied signals, and the other with a phase equal to the sum of these phases. The lat-
ter signal is easily filtered out, as its frequency is twice that of the radiated signal.

The basic block diagram of an FM radar is shown in Figure 2.1. The signal
from the FM generator, controlled by the modulator, is radiated toward the target
by the transmitting antenna. The expression for the transmission is:

u,(()=U,(t)cos ¢, (1) 2.1

where U,(7) is the signal amplitude and ¢,(¢) is its phase. A sample of the FM gen-
erator signal passes to the multiplier (mixer) as the heterodyne signal. This signal,
which we will call the direct one, can be expressed as:

11
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Receiving . System of converted Information
antenna o Mixer signal processing » display
Transmitting " FM Frequency
antenna generator . modulator
Figure 2.1 Basic block diagram of an FM radar system.
1, (1) =U, () 005 9, (2) 2.2)

where Ugf?) is the direct signal amplitude and @.(f) is its phase. The time-
dependence of amplitudes of the transmitted and direct signals is caused by the
fact that the frequency modulation is practically always accompanied by parasitic
amplitude modulation. Also, the amplitude of a signal from any generator always
fluctuates.

The reflected signal from the receiving antenna also enters the mixer. In fur-
ther analysis we will consider that the reflecting target introduces no further ampli-
tude or phase fluctuations (i.e., it is a point target). Such a model of the reflected
signal does not correspond completely to a real reflected signal, but it allows
rather simple analysis of the mixer output signal as we consider processing meth-
ods and carry out necessary calculations. The theory of operation of FM radar, in
view of parameters of the real reflected signal, is a subject of an extensive separate
discussion. Thus, the reflected signal can be written as:

u, =U,(t,1)cos ¢, (1,7) = KU, (t - t)cos[ ¢, (t — 1)+, | (2.3)

where k| expresses the reduction in its amplitude, T is its time delay relative to the
transmission, and @, is the phase shift caused by reflecting properties of the target.

As the reflected signal entering the mixer is much less than the direct signal,
the mixer output signal can be written as

u, (1) =kU, (t,7) cos[cpd (t)-o.(t.7)- (po] +kU, (2) 2.4)

where the first term represents the result of conversion of the reflected signal, the
second is the result of amplitude detecting the direct signal, and &, and k; are fac-
tors describing the mixer voltage gains in conversion and amplitude detection
modes. We will call the mixer output signal the converted signal. In the literature
it is frequently called an intermediate frequency (IF) signal (by analogy to the
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intermediate frequency signal in a superheterodyne receiver), and also the distance
measuring signal.

Only the first term in the converted signal (2.4) is useful, containing the in-
formation on target range and speed relative to the FM radar. The second term is a
parasitic signal. This signal has no influence on the useful signal, but at the same
time has a major influence on operation and technical parameters of FM radar,
especially on short-range FM radar. The fact is that the intensity of this signal, as a
rule, exceeds that of the useful signal by a ratio varying from a few to tens of deci-
bels, and its spectrum overlaps that of the useful signal. The reduction of parasitic
signal effects on the operation of FM radar is one of most important and difficult
technical problems in design.

The converted signal from the mixer output passes to the system of process-
ing, selection, and display of range and speed information. Thus, in further analy-
sis of the useful signal we will consider that the transmitted, direct, and reflected
signals have no amplitude modulation (i.e., U (t) = U,, Uf?) = Uy, and U(¢) = U,).
Methods for decreasing of influence of parasitic amplitude modulation of the di-
rect signal on operation of FM radar will be analyzed further in Chapters 4 and 5.

As we can see, the main feature of an FM radar is the multiplication of trans-
mitted (direct) and reflected signals. Let us note also that this block diagram is
rather close to that of the correlation receiver. This block diagram forms the basis
of many block diagrams of FM radar. We now proceed to consideration of typical
block diagrams of short-range FM radar.

2.2 TYPICAL BLOCK DIAGRAM OF SHORT-RANGE FM RADAR

2.2.1 System with Separate Transmitting and Receiving Antennas
and Nonzero Intermediate Frequency

The block diagram of this radar, ‘which is the most complex and ideal, is given in
Figure 2.2. The main difference between this system and the basic one is that a
central frequency shift is included in the direct signal path between the FM genera-
tor and mixer. In this block the central frequency is shifted to one side or the other
by 8w, and the parameters of modulation remain unchanged, as necessary for sys-
tem operation. This shift is often implemented by amplitude modulation of the
direct signal followed by selection of one sideband. The size of shift is determined
by the transmitted spectral width, by parameters of the filter selecting the side-
band, and by requirements for suppression of other parts of the signal spectrum. In
a radar operating at centimeter wavelengths, the carrier frequency shift is usually
between tens and several hundreds of MHz.

The basic purpose of the central frequency shift is the realization of classical
heterodyne reception. As the central frequencies of direct and reflected signals are
separated by dw, the converted signal spectrum will be grouped around that fre-
quency. This permits the basic amplification of a received signal by an IF band-
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Figure 2.2 FM radar with nonzero intermediate frequency.

pass amplifier, as is done in typical superheterodyne receivers, and achieves de-
coupling between this signal and the parasitic amplitude modulation signal. An
additional microwave amplifier can also be included between the receiving an-
tenna and the mixer. In other respects this block diagram does not differ from the
basic circuit of Figure 2.1.

This circuit is applied mainly in cases where high receiver sensitivity is neces-
sary and there is an opportunity to ensure sufficient decoupling between receiving
and transmitting antennas. With insufficient decoupling, an intense signal with
frequency w will appear at the input to the IF amplifier as a result of leakage from
the transmitting antenna into the receiving antenna, which can complicate ampli-
fier operation and cause coupling between the useful signal and the parasitic am-
plitude modulation signal.

2.2.2  Circuit with Nonzero Intermediate Frequency and Complex
Frequency Modulation

By applying certain complex types of modulation, the converted signal, whose
spectrum occupies higher frequencies in comparison with modulation frequency,
may be caused to have so-called dual-frequency modulation (i.e., modulation by
the sum of two periodic functions). The appropriate block diagram of such radar is
given in Figure 2.3. In this system there is no carrier frequency shift of the direct
signal, and therefore the receiver here is called a homodyne. In other respects this

verma” [ tvertars [ Mo [ arginer el orocessing
!
i
Transmitting | g FM Frequency Information
antenna generator [** "1 modulator display

Figure 2.3 Homodyne FM radar (with nonzero intermediate frequency).
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system does not differ significantly from the previous one.

This system has not found wide application, mainly due to the fact that it re-
quires the application of complex modulation, complicating selection of the useful
part of the converted signal spectrum, especially in cases where the range to the
target varies very widely, and homodyne reception does not give the advantages
inherent in the previous circuit. Homodyne reception is nevertheless applied in
most short-range FM radars. Despite its disadvantages, homodyne reception has
one very important advantage: it permits use of one antenna for both trangmission
and reception of a continuous signal.

2.2.3 System with a Single Transmitting-Receiving Antenna

This type of short-range FM radar is the most widely used, as it has minimum size
and can be built as a single block. It differs from the previous one by the structure
and circuit of the microwave block, and hence we show in Figure 2.4 not the full
radar circuit but the only the diagram of that block.

As in the previous circuits, the FM generator can be modulated by one or by
the sum of two or more modulating functions. The generated signal enters port 1
of the circulator. Almost all the energy of this signal (losses are typically tenths of
a decibel) passes from port 2 to the transceiver antenna and is radiated toward the
target. As the isolation between ports 1 and 3 is not infinite (usually no more than
20 to 30 dB), a small part of the signal power from port 1 appears at port 3, to
which the mixer is connected. This leakage signal can serve two functions. On the
one hand it can serve the function of a direct signal as the heterodyne signal for the
mixer. On the other hand, it can simultaneously be harmful as a source of a para-
sitic signal at the mixer output, formed because of amplitude detection of the di-
rect signal with parasitic amplitude modulation.

Which of these two functions applies to this signal depends on the mixer pa-
rameters (i.e., on the ratio of gain factors in conversion and detection modes, and
also on the ratio of the reflected and direct signals: the more the first factor ex-
ceeds the second and the greater the ratio of signals, the greater the effect of the
first function and vice versa). In most cases the leakage signal performs both func-
tions. If the leakage signal power is insufficient for normal mixer operation, an

2 3
Transceiver Circulator Mixer To system of converted
antenna > signal processing
1 [ — |
FM Frequency
generator modulator

Figure 2.4 FM radar with single transmt-receive antenna.
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Figure 2.5 Autodyne FM radar with single transmit-receive antenna.

additional path can be provided connecting the direct signal to the mixer (shown
by a dashed line in Figure 2.4).

The signal reflected enters port 2 of the circulator, passes to port 3 and on to
the mixer. The converted signal from the mixer output passes to the processing and
information selection system. As we can see, the microwave block is rather simple:
for millimeter band operation its volume does not exceed several cubic centime-
ters. The basic disadvantage of this circuit is the difficulty of neutralization of the
harmful effect of the parasitic amplitude modulation signal on the processing cir-
cuit, resulting from amplitude detection of the leakage signal. However, this does
not prevent wide application of this circuit to short-range FM radar.

2.2.4 Autodyne System with a Single Antenna

The block diagram of this FM radar is given in Figure 2.5. The main difference
between this system and the previous ones is the use of an autodyne. The autodyne
is an oscillator that simultaneously carries out functions of generating the trans-
mission and mixing the transmitted and reflected signals. There is no separate path
for the direct signal in the autodyne, as the radiated and reflected signals exist at
the same point of the autodyne circuit. It is obvious that the autodyne can operate
only with one combined (transmitting-receiving) antenna. The main advantage of
this circuit is the simplicity of its microwave part, compactness, and relative
cheapness. Therefore this circuit is applied when these qualities are determining,
for example, in widely applied small-sized onboard FM radars.

A specific feature of the autodyne is the fact that quasi-linear conversion is
possible only up to a certain reflected signal level at which it has no appreciable
influence on the mode of autodyne operations. However, operation with rather
intense reflected signals at small target ranges is possible in short-range FM radar.
The detailed theory of autodyne operation is given in the second part of this book.

23 GENERAL EXPRESSIONS FOR TRANSMITTED, REFLECTED,
AND CONVERTED SIGNALS

For frequency modulation of the transmission, the expression for its frequency is
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o, (=0, + Awy(t) 2.5)

where o, is the central frequency; Aw is the frequency deviation; and y(¢) is the
frequency modulating function. The phase of the transmitted signal is

0,(0) = [,(0)dt = w1 +Ao[y()d! = 01 + A0F, (1) (2.6)

Here, the initial phase is set equal to zero, and for simplification of formulas the
integral in (2.6) is designated as:

F (= J’ y(£)dr 2.7
0

The function F,(¢) by analogy with y(#) is the phase modulating function of the
signal. If there is no the shift in the central frequency of the direct signal, its phase
will be the same as that of the transmitted signal: @{f) = @,(?).

With shift of the central frequency, the phase of the direct signal will be

0, (1) = (0, £8w)t + AwF, () (2.8)

The additional phase shift in the direct signal path can also be considered zero, as
it has no influence on radar operation.

With the provision that we consider the target as a point target, the phase of
the reflected signal is

0,(t,0) = 0,(t = 1) + A0F, (1,7) + ¢, (2.9)

l -1
where F (t,7) =jy(t—t)dt= Iy( t)dt is the phase modulating function of the
T 0

reflected signal. The lower limit in the integral in this formula is equal to T because
the reflected signal has that time delay.

Substituting (2.6), (2.8), and (2.9) into (2.4), we obtain the expression for
phase of the converted signal for the cases without and with central frequency
shift, respectively:

@,(t,7) = 0,1+ A0 F, () - F,(1,7) ] - 9, (2.10)

®,(t,1) =8cot+t1)ct+Ao)[Fp(t)-F,(t,r)]—(po (2.11)
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The difference of the modulating functions in square brackets in these formulas is
the phase modulating function of the converted signal and can be expressed as:

-1 t

F(t,9) = [y@dt - [ v(dt = | vt (2.12)

0 -t

For further analysis of the properties of the converted signal, let us assume
that the delay of the reflected signal in time varies linearly:

(=1, +2—th (2.13)

where 1, is the initial value of delay; V, is the relative radial speed between the
radar and the target; and C is the speed of propagation of electromagnetic energy.
In this case

0,1(t) = 0,1, +£g—’wct =@, +Qpt (2.14)

where @, is the initial phase shift and Qp is the Doppler frequency. Thus, the as-
sumption is that the Doppler frequency caused by target motion is constant as is
necessary to carry out the analysis of the converted signal spectrum. Such an as-
sumption is reasonable for the following reason. The maximal time necessary for
processing of the converted signal for most short-range FM radars does not exceed
several tens of milliseconds. During this interval the motion of most targets is so
insignificant that we may consider the relative radial speed constant. For example,
at 100 km/h the target will move by only 30 cm in 10 ms.
Substituting (2.14) in (2.10) and (2.11), we obtain

Q,(t, 1) =1Qt +A0F, (t,T) + ¢, — @, (2.15)
¢,(t, 1) =Bt +AwF,(t,T)+0, — @, (2.16)

Differentiating (2.15) and (2.16) with respect to time, we obtain expressions for
the instantaneous frequency of the converted signal:

Q@ 1)=tQ, +a0 EED (2.17)
Q(t,t)=(8miQD)+Amd—E;(;’—Q (2.18)
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In (2.17) the absolute value is necessary because the converted signal frequency at
different moments of time can have “negative” sense. The sign of Doppler fre-
quency in (2.17) and (2.18) has symbolical meaning and serves as a reminder that
the Doppler frequency shifts the spectrum toward higher frequencies for approach-
ing targets, and toward lower frequencies for receding targets.

24 GENERAL RELATIONSHIPS FOR THE CONVERTED SIGNAL
WITH MODULATION BY A PERIODIC FUNCTION

For periodic transmitter modulation we will define the frequency modulating func-
tion y(¢f) as a function with period T,, having zero average value, varying from
—0.5 to +0.5 and having a definite type of symmetry.

The normalization of limits of function y(¢) is necessary because with different
types of modulation the limits of frequency change are determined only by the
frequency deviation Aw. It is otherwise impossible to compare parameters of the
converted signal with various types of modulation. With periodic modulation, the
modulating function of the converted signal phase, as follows from (2.12), is also
periodic and hence the converted signal is a frequency-modulated signal.

For further analysis it is useful to consider the following. As the phase modu-
lating function of the reflected signal is moved in time 7 relative to the modulating
function of the transmission, the modulating function of phase of the converted
signal equal to their difference is asymmetric, because of a shift of t/2. In this
connection, it is expedient for operations with this function to make a replacement
of the variable, setting ¢ = ¢ — /2.

In short-range FM radar the relationship 7,, >> t is usually applicable. Actu-
ally, for an example at target ranges up to 150m and with a modulation frequency
of 10 kHz, the ratio T,/t = 100, and at smaller range this ratio will be even greater.
In this case, using the known theorem for the average value of the integral, it is
expedient to calculate the simple expression for the phase modulating function of
the converted signal:

Ee=] y(t)dzzw[r—g}w(r') 2.19)

Note that (2.19) is applicable only in the event that the function y(f) has no discon-
tinuities in the interval from ¢ — t to ¢, as is true for most modulating functions.

Equation (2.19) is very convenient in calculation, as it avoids integration of
the function y(¢), and equally importantly, it allows us to see directly the relation-
ship of the phase modulating function of the converted signal to the function y(f)
(the type of modulation of the transmitter):

Q,(t,7) = =Qpt +Aoty(t) + ¢, — @, (2.20)
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0,(1,7) = B0 £Q, )t + Aoty () +¢, ~ @, (2.21)

Using (2.17), (2.18), and (2.19) we also have simple expressions for the instanta-
neous frequency of the converted signal:

Q1) =tQ, +Amd—’;(t’—) (2.22)
Q,t,7) = (etQ,) +Aco'td—1(;t£) (2.23)

One of the major characteristics of the converted signal is its spectrum. It is
obvious that the converted signal spectrum in the case of direct signal central fre-
quency shift differs significantly from that without such a shift. In the first case the
converted signal spectrum is concentrated in the band 8w. The parameters of
modulation of the transmission are selected in such a manner that the converted
signal spectral width is much less than 5®. Hence the converted signal spectrum in
this case does not differ from that of an FM signal whose frequency is defined by
(2.18) or (2.23). The procedure for calculation of the FM signal spectrum is de-
scribed in detail in any textbook on the fundamentals of radio engineering, and it is
therefore unnecessary to carry it out within the framework of this book.

In the second case the converted signal spectrum appears in the band of fre-
quency of modulation, or equivalently in the region of “zero intermediate fre-
quency.” Often in the first case the converted signal is exposed to a second con-
version with heterodyne frequency 8w and is moved into the region of “zero in-
termediate frequency.” Thus, the calculation of a spectrum only for the second
case represents the greater interest.

For calculation of its spectrum, we will write the converted signal from (2.10),
(2.12), and (2.14) as:

u, =U, cos[+Q,t + AwF, (t,0) + ¢, — ¢, |

U cos[+Q ¢+, — @, |cos A@F, (¢,7) (2.29)
- —sin[£Q,1 +¢, -, |sin AwF, (¢,7)

The functions cosAw@F,(z,t) and sinAaF,(t,1) are periodic by virtue of periodicity
of the function F,(t,7) and can be presented as Fourier series. However, this only
applies with one assumption: we consider T constant in expansion of the specified
functions. Otherwise these functions are not periodic and their expansion in a Fou-
rier series is impossible. This assumption is justified by the fact that the delay time
practically does not vary during the period of modulation. Actually, the period of
modulation in most cases does not exceed milliseconds, but even at 100 km/h the
range will change by only ~3 cm in 1 ms. The change of Awt will also be insig-
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nificant. So for example, at ~10m range, the relative change will be ~0.3%. Be-
sides, at a range of 10m targets do not move with relative speed of 100 knmv/h.
Thus, the assumption is not only necessary but justified.

At the same time we note that if in (2.13) we accept the delay time as con-
stant, then the Doppler effect is not taken into account in the analysis of the con-

verted signal, which is obviously completely inadmissible. So, setting ¢ — 1/2 = ',
we obtain

cos AWF, (¢',1) = %! )+ZK (D)sin[nQ, 1" +y, ()] (2.25)
where K,(1)=a(v)+b} (1)
a,(1)
tan —
v, (1) = arc 5
I,
a,(t)= % ?.f cos AwF (¢',1) cos(n%:ft’]dt’
2% , . 2n ,,,
bn(t)=};‘!cosAwE(t,'c)sm(nztJdt
and
. [ 0( )
sinAoF, (£',7) = 5 +ZL (Dsin[nQ, 1"+, (0] (2.26)
where L,(v)=ci(v)-d} (1)
c (‘t)
tan —
X (1) =arc a0
27 ,
c,,('c)—-z—:n—.! sin AwF, (¢, t)cosnTm t'dt’
d (t)—i}sm AwF (', t)smn2 t'dt’.
g T T

m O m

Substituting (2.25) and (2.26) into (2.24) and using the variable ¢, we obtain:

1

u, =U, + i An(t)sin[(QM Q-9 +o,—nQ, %4—1‘](1)] L (2.27)
n=1

e, (1)sin[Q,t+ ¢, — 9, +5(1)]

+ Zl Bn(t)sin[(Qm +Q )+, —¢, —nQ §+ v(r)jI
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where: U,e,(t) =0.5\/a; (1) +c2(t) is the amplitude of the spectral component
with the Doppler frequency;

a; (v)
¢ (v)

the Doppler frequency;
UA (t)= 0.5\/K,f (0 + L (1) - 2K, ()L, (v)sin[y, (1) - %, (v)] is the

amplitude of a spectral component with frequency nQ,, — Qp;
UB,(t)= O.SJKf () +L (1) +2K, (YL, (7)sin]y, (1) - %, (0] is the

amplitude of a spectral component with frequency nQ2_ +Q_ ;
K, (vsiny, (t)-L,(v)cosy, (7)
K, (v)cosy, (t)+ L, (t)siny, (1)
shift of the spectral component with the frequency nQ,, — Q;
K, (v)siny, (t)+L,(1)cosy, ()
K,(v)cosy, (t)~L,(v)siny, ()
shift of the spectral component with the frequency 7€, + 2.

¢(t) = arctan is the additional phase shift of the component with

n, (1) =arctan is the additional phase

v, (1) = arctan

is the additional phase

From (2.27) it follows that the converted signal spectrum includes a component
with the Doppler frequency determined by the first term, and an infinite number of
components with frequencies nQ),, + , and that the components with frequencies
nQ,, are absent. This implies that the converted signal belongs to a class of so-
called almost periodic fluctuations.

The amplitudes and phases of each pair of components with frequencies
nQ,, + Q and nQ,, — Q are related and depend on the range to the target, the type
of modulation, and the frequency deviation of the transmission. If the range be-
tween the radar and the target is constant (i.e., Doppler effect is absent), each pair
of spectral components merges into one with frequency nQ,,.

25 GENERAL RELATIONS FOR A CONVERTED SIGNAL WITH
DUAL-FREQUENCY MODULATION

Modulation by the sum of two periodic functions is called dual-frequency modula-
tion. The need to analyze the converted signal with this modulation is explained by
several factors. First, such types of modulation are applied in SRR. The second
modulation is intended to provide the necessary SRR parameters and performance
(improvement of range resolution, generating a signal of “intermediate fre-
quency”), for security of operation of automatic systems in the converted signal
processing device, and so forth. Second, in some cases of modulation by a com-
posite function it is convenient in the analysis of a converted signal to represent
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the frequency modulating function of the transmission as the sum of two other
functions that are more convenient for integration in evaluation of the Fourier se-
ries coefficients. In some cases such an approach may be the only feasible method
for performing the necessary calculations.

Third, it is convenient in analyzing the effect of a nonlinear FM generator
modulation characteristic to express this characteristic as the sum of linear and
nonlinear parts. Thus an incidental dual-modulation appears even when single
modulation is intended. With dual-modulation the frequency of the transmission
can be expressed as

@, (1) = +Bayy, () + Ay, (1) (2.28)

where y,(f) and y,(f) are frequency modulating functions with periods 7, and T,

and varying within limits from -0 § to 0.5. By analogy with previous calculations,
the phase of the converted signal is

@,(t,7) =Xt + Ao F, (¢, 7)) + A, F,(1,T) + @, — @, (2.29)

Further analysis can be carried out in two ways. The converted signal can be
expressed as in (2.24), and the phase shift due to the second modulation is in-
cluded as an addition to angles +€25t + @_ — @, for which we write (2.24) as:

u, =U, cos[iQDt +Ao F,(t, 1)+ Ao, F,,(t,T)+¢, - (po]

U cos[+Q,t + @, - @y + A0, F,, (1,7)[cos Ao, F,(t,7) (2.30)
- —sin[+Q,t+ ¢, — @, + A0, F, (¢,7)]sin Ao, F, (¢,7)

and perform further calculations using (2.25) - (2.27). After that we view each
spectral component of the converted signal with frequency n(,,; £ Qp as a phase-
modulated oscillation whose phase varies according to Aw,F(¢,t). Such an ap-
proach is expedient for applying the rule that there appear near each component of
the converted signal spectrum one or two sidebands, for small phase modulation
index of the second modulation, and if the periods of modulating functions y;(f)
and v,(¢) differ significantly the sideband spectra do not overlap.

A spectral analysis similar to that carried out for a single modulation (2.24) -
(2.27) allows us to define the general regular dependence of the converted signal
spectrum on phase (2.29).

Using known formulas of trigonometry, it is possible to express the converted
signal as

(2.31)

t

U cos x (1208 ycos z—sin ysin z)
u = I . . .
' ~ sin x(sin y cos z + cos ysin z)
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where x = £Qpt + @, — @p, ¥ = A Fy(1,1), and z = A®,Fp(t,1). Further functions
siny, sin z, cosy, and cos z are represented as Fourier series similarly to (2.25) and
(2.26). From comparison of (2.25), (2.26), and (2.31) it follows that the converted
signal spectrum for dual-modulation consists of components with frequencies
+nQ,, + kQ,, +Qp, where n = 0,1,2,3..., k = 0,1,2,3..., whose amplitudes are de-
termined by products of the form

41902 C01€02 > F01€01> B01€02» F02€015 B02C 02>
Ay Lyy5 005 L1 €01K 125 CorKints KKz Ly Lias Ko La L Ky

in which the coefficients g, ¢, K, and L are determined from (2.25) and (2.26) for
the first and second modulations. From this analysis at least two important deduc-
tions follow:

1. With dual-modulation the spectrum of the converted signal becomes con-
siderably complicated, and hence filtration of this signal becomes complicated.
Therefore dual-modulation, if applied, is auxiliary and its parameters are picked so
that a Fourier series of functions sin z and cos z can be restricted to a small number
of terms.

2. The dependence of the amplitude of any spectral component upon the
product of the relevant coefficients of a Fourier series creates additional opportu-
nities for forming the necessary converted signal spectrum.

2.6 GENERAL RELATIONS FOR A CONVERTED SIGNAL WITH
MODULATION BY A MODULATED PERIODIC FUNCTION

In practice, for an SRR there are cases of intended double modulation, when the
amplitude or angular modulation of the modulating function itself y(¢) is applied.
Such modulation is applied, for example, for security of operation of automatic
radar systems or for obtaining the necessary performance of the converted signal.
With amplitude modulation by the function (), the frequency modulating func-
tion of the transmission is:

n(r) = [L+md()] y(2) (2.32)

where &(?) is the function defining the type of amplitude modulation, and m is the
amplitude modulation index. The frequency of the transmission is

o, (1) = o, +Ao[1+md(0)]y() (2.33)
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In the overwhelming majority of cases the period of function &(¢) differs consid-
erably from the period of function y(#), and more often the period of the first is
much greater than that of the second.

The analysis of the converted signal in this case is easily carried out, consider-
ing the function y(¢f) as unmodulated, and frequency deviation as modulated by

Aol + md(5)]. Thus, calculation of the converted signal parameters is initially
carried out using the procedure described in Section 2.4, on the assumption that
the frequency deviation is fixed. After that the dependence of the relevant con-
verted signal parameters (phase. instantaneous frequency, spectrum) upon the
varying deviation is determined.

This approach can be applied also for the case in which the repetition periods
of functions &(f) and y(f) are commensurable, but in this case the calculations be-
came significantly complicated because of spectrum overlapping of sidebands ap-
pearing near each component of the converted signal spectrum.

If the repetition period of function y(¢f) is modulated, that will occur much
more slowly than the period of the function. Therefore here again it is possible to
carry out all calculations assuming a constant period, and then inserting the rele-
vant corrective amendments to the converted signal parameters, related to the pe-
riod of the modulating function +(f) (for example, the value of instantaneous fre-
quency or frequencies of spectral components of the converted signal).

2.7 BLOCK DIAGRAMS OF ULTRASONIC SRR AND
FEATURES OF THE CONVERTED SIGNAL

As specified in Chapter 1, implementation of SRR is possible not only in radio
frequency bands, but also at ultrasonic frequencies. In this case the transmitted
signal is ultrasonic waves representing mechanical oscillations of the gas or fluid
surrounding the SRR. These waves are generated by ultrasonic transducers that
excite mechanical oscillations in the gas or fluid in response to an electrical signal.
The principle of operation of these transducers is based on the piezoelectric effect
or on magnetostriction. Thus, the: ultrasonic transducer is the antenna of the uitra-
sonic SRR. As in the radio antenna, the ultrasonic transducer cannot only radiate
ultrasonic waves, but also convert ultrasonic waves to an electrical signal, and as
with the radio antenna, the ultrasonic transducer is characterized by a radiation
pattern, gain factor, and sidelobe levels.

The range of operating frequencies of transducers lies between ~20 and
100 kHz for operation in a gas medium, and ~50 to 300 kHz for a fluid. The width
of the radiation pattern varies from a few degrees up to two or three tens of de-
grees and depends on the geometrical size of the transducer and its construction.
The power of the transmission is such as to provide an operating range up to sev-
eral tens of meters in a gas medium and hundreds of meters in a fluid.

Ultrasonic waves are propagated much more slowly than radio waves. The ve-
locity of sound in air is ~330 my's, and in water ~1,500 m/s. Also, the velocity of
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sound propagation depends on the temperature of the medium (for example propa-
gation in air varies by ~0.5 m/s°C), the water vapor or dust content of the gas me-
dium, the concentration of the weighed particles in a fluid, and so forth.

As we can see, the velocity of ultrasonic waves in air is approximately 10°
times less than the velocity of propagation of an electromagnetic field. Thus, the
wavelength of an ultrasonic wave in air at a frequency ~50 kHz is equal to the
wavelength of radio-waves at a frequency ~50 GHz (~6 mm). The same ratio ap-
plies to the frequency deviation: a frequency deviation of ~1 kHz in an ultrasonic
wave in air corresponds to a deviation of 1 GHz in a radio frequency, as the prod-
ucts Aot in both cases will be identical.

The reduced values and the parameters of ultrasonic transducers allow us to
draw the conclusion that the ultrasonic SRR follows the same principles as for
radio waves. Actually, ultrasonic SRRs are usually designed with the same block
diagrams as radio-wave systems (Figures 2.2 to 2.5). Ultrasonic transducers are
used instead of “antennas.” Precisely the same variants with two and with one “an-
tenna” - the ultrasonic transducer - are also possible. Certainly, in the scheme of
Figure 2.4 there is no circulator, and the FM transmitter signal is passed to the
same point; the ultrasonic transducer and mixer.

Principles and expedients of converted signal processing in an ultrasonic SRR
are almost the same as for the radio frequency one. Some differences are caused
by large values of delay time of the reflected signal, because of which it is difficuit
to ensure the validity of the relation T,, >> 1 in some cases. For example, at a tar-
get range of 16m, the delay time of a reflected ultrasonic signal propagating in air
is ~0.1s. Thus, even with frequency modulation at 10 Hz, T,, ~ 1, and it is obvious
that with target delay time equal to the modulation period there is an ambiguity in
determination of range, as this situation is equivalent to absence of a delay (i.e., to
zero target range).

With increase in the period of modulation it can appear that the frequency of
modulation is commensurate with or even less than the Doppler frequency. Note
that the Doppler frequencies for radio frequency and ultrasonic SRR are approxi-
mately identical, as the radiated wavelengths are approximately identical. With
comparable frequency modulation and Doppler frequency there are difficulties in
filtration and processing of the converted signal. Hence, with a change of Doppler
frequency such converted signal parameters as its phase, instantaneous frequency,
and spectral pattern vary considerably. For this reason ultrasonic SRR with con-
tinuous radiation can be most expediently applied to measuring of very small
ranges (less than several meters), with small target velocities, especially when a
simple, reliable, and mainly cheap measuring device is required.



Chapter 3

Characteristics of the Converted Signal
with Different Transmitter Modulations

31 SINUSOIDAL MODUIL.ATION

Modulation by a sinusoidal function is often applied in SRR. It is explained by
. several considerations. First, it is relatively simple to produce such modulating
voltage or current. The narrow bandwidth of the modulating process reduces re-
quirements on the frequency response of the modulator. The frequency spectrum
of the converted signal makes it suitable for processing and deriving of range data.
Thus, the area of application of this modulation: simple and compact SRR, such as
low-range altimeters, level measuring radar, and sensors of mobile targets in secu-
rity systems.

3.1.1  Modulation by a Single Sinusoid
In this case the modulating function of transmitter frequency is defined as

cosQ t

Y = 3.1

Note that the modulating function could be defined by a sine without changing the
result.
According to (2.12), phase modulating function of the converted signal is

F1)= J» cosQ), ¢ di = sin(rt/T) Ecost(t—EJ (.2)
2 /T, )2 2

-t

27
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In most cases the term in brackets before the cosine differs little from unity be-
cause T,, >> 1. However, in some cases this relationship is violated and it is im-
possible to neglect this term.

According to (2.17) and (2.18), we obtain expressions for instantaneous fre-
quency of the converted signal accordingly for the case with no direct signal cen-
tral frequency shift and with a shift:

Q,(t,7) = |, - SRV T (80T g (t—i) (3.3)
/T, 2 2
Q,(t1) = S0t Q, —| /1) ﬂﬂmsmﬂm(t——f] (3.4)
/T, 2 2

It follows from (3.4) that with direct signal central frequency shift, the converted
signal has sinusoidal frequency-modulation with a frequency deviation given by

AQ, () =(sin(1tt/T,,,))A(o_tQ

3.5
nt/T, 2" ¢ ).

In this case deviation is understood as maximal shift of instantaneous frequency
from a center frequency of the converted signal (note that the frequency deviation
of the transmitted signal was defined as a frequency shift from its minimum to its
maximum). From (3.5) it also follows that the maximum value of frequency devia-
tion of the converted signal is Aw at t= T,/2.

For T,, >> 1 the dependence of frequency deviation of the converted signal on
echo signal delay is linear and, importantly, is continuous. This permits convenient
use of this dependence for range measurement. From (3.4) it also follows that the
center frequency of the converted signal is shifted in to one side or the other by the
Doppler frequency. To which side the frequency is shifted depends on whether the
target is receding from or approaching the SRR, and on whether the direct signal
central frequency is below or above that of the transmitted central frequency.

Let us suppose that the target is approaching, producing a center frequency of
the reflected signal @, = ®. + Qp. If the direct signal central frequency is
O = 0, — 60, the center frequency of a converted signal is @, + Qp — (®, —d®) =
8w + Qp. If the direct signal central frequency is o,y = ®, + S, the center fre-
quency of the converted signal is o, + do ~ (®, + Qp) = S — Qp. For a receding
target the sitnation will correspondingly be the opposite: the center frequency of
converted signal for an approaching target will be shifted downwards by the Dop-
pler frequency, and for a receding target will be shifted upwards. Thus, by the shift
of center frequency of the converted signal it is possible to determine not only the
relative (radial) speed of the target, but also whether it approaches or recedes.
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Completely different time dependence of instantaneous frequency of the con-
verted signal takes place in the absence of direct signal central frequency shift. In
this case the converted signal is also frequency-modulated. Formally the “central”
frequency of the converted signal is the Doppler frequency, and for fixed targets it
is “zero” frequency. The frequency deviation is also determined by (3.5). There-
fore, dependence of instantaneous frequency in this case is largely determined by
the magnitude of Doppler frequency. If Qp > AQ/(1), the converted signal repre-
sents an FM signal with center frequency Qp and sinusoidal modulation. On the
other hand, if Oy < AQ((1), separate segments of instantaneous frequency values
fall in area of “negative frequencies.” However, as “negative” frequencies do not
exist, the “negative” values of instantaneous frequency are folded to the area of
positive frequencies, and a plot of instantaneous frequency from (3.3) has an in-
flection on the time axis [Figure 3.1(b), (c)].

For approaching targets, when the center frequency of reflected signal is in-
creased, the plot of instantaneous frequency is shifted upwards by the Doppler
frequency [Figure 3.1(b)], and for receding targets is shifted downwards by the
same value of “negative” Doppler frequency [Figure 3.1(c)]. But, as we can see,
one curve differs from other only in that it is shifted in time by a half-period of the
modulating function. Therefore, it is impossible in this case to determine the
“sign” of Doppler frequency from parameters of the converted signal, and from it
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Figure 3.1 Modulating function and instantaneous frequency of the converted signal.
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to determine whether the target is approaching or receding. That can be done only
by comparing values of maximal instantaneous frequency to values of the deriva-
tive of the modulating function at its zero points [Figure 3.1(a)]. If the derivative is
positive, we are at point 1, and if it is below zero, at point 2. Comparing values of
instantaneous frequency at these time moments it is possible to determine whether
the target is approaching or receding.

The spectrum of the converted signal in the case of direct signal central fre-
quency shift, as noted in Section 2.4, differs not at all from the spectrum of a
“usual” FM RF signal with sinusoidal modulation. The same spectrum will appear
if Qp > AQ,(1). The difference is only that in the first case the center frequency of
the converted signal is S + Qp, and in the second it is Qp Therefore we shall
calculate a spectrum only for a case of no direct signal central frequency shift, and
supposing Qp < AQ((t). For this derivation we use (3.2) and (2.24).

In this case it is not necessary to use (2.25) and (2.26), as it is easier to apply
the well-known series from the theory of Bessel functions:

cos(X cos0) =J, (X)+2i(—l)”J2n(X) cos2n0 (3.6)
Sin(X cos8) =23 (=1 Ty, (X) cos(2n +1)8 3.7
n=0

where Ji{x) is a cylindrical Bessel function of the first type and order .
sin(nt/T,)
nt/T,
(3.6), and (3.7) we obtain, for the spectrum of the converted signal:

Assuming X =[ ]ﬁ‘% and 8=0Q_(t=1/2), and using (2.24),

Jo(X)cos(Qpt + ¢, ~ @)

+ ) (=1)"J,, (X)cos[(2nQ2,, +Qp )t + ¢, — @, —nQ, 7]

n=1

u,=U, + 2 (<1)"J,, (X)cos[(2n€2, —2,)t = 9, + @y — 1O, 7]

n=1

—i(—l)”sz(X)cos[[(Zn +DQ, +Q, ]t +0, -0, — 2n+1DQ,1/2]

- i(—l)"JM(X)cos[[(zn +DQ, —Q, ]t -+, - (2n+1DQ,7/2]
n=0 J

(3.8)
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Figure 3.2 Spectrum of the converted signal.

It follows from (3.8) that the spectrum consists of components with frequen-
cies kQ,, £ Qp, and the amplitudes of each pair of components are identical. A
portion of the spectrum applicable to value X =4 is shown in Figure 3.2.

In comparing this spectrum to the known spectrum of an FM signal at a center
frequency S * Qp, it is easy to note that the former is obtained from the latter by
a shift to zero frequency. Thus, the components of the spectrum that have appeared
at “negative” frequencies are displaced to positive frequencies by “folding” of the
spectrum about a vertical axis at zero frequency. As the amplitudes of spectral
components with negative and pusitive frequencies are identical, and the entire
spectrum is shifted to one or the other side by Doppler frequency, the illustrated
spectrum 1s obtained. Notice also that the spectral structure will not vary with
variation of “sign” of Doppler frequency, as each pair of components will change
places.

The spectral structure shown in Figure 3.2 is valid if the relationship
Qp < Q,/2 applies. If this relationship does not hold, the spectral components are
changed such that the component with frequency (n — 1)Q,, + Qp is situated on the
frequency axis more to the right of the component with frequency nQ,, — Qp. The
extent of this change depends on how much the Doppler frequency exceeds half
the modulation frequency.

The spectrum of the converted signal has no well-defined maxima. This is ex-
plained by the nature of Bessel functions, which decay slowly with increase in the
argument. For fixed 1, with increase in /7, up to value 0.5, the spectrum spreads
in frequency because of increase in the frequency deviation of the converted sig-
nal. Then, with further increase in this ratio, the spectrum is again narrowed.

3.1.2  Dual Sinusoidal Modulation

The modulating function of a transmitter frequency in this case is given by

cosQ .t cos€2,,t
() = . T3 (3.9)
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The modulating function of the converted signal phase is determined by (2.12),
and its instantaneous frequency by (2.17). The particular aspect of dependence of
these parameters upon time is determined by magnitudes of frequency deviations
A(J)l and A(\)z.

The calculation of the converted signal spectrum is made using (2.5), (3.6),
and (3.7), resulting in:

J (X)) (X,)+ 22(—1)"J0(X1)JZ,((X2)c052kazt'

k=1

+2 (-1 Ty (X, (X)) cOS 2802,

n=1

=U t 2
U oY S (D ()30 () OS2 £ 20, )
k=1

n=1

23 (D" T (X)W (X c0s| 2k +DQ,,, £ 20 +DQ,,, ]
k=0
n=0

N

23" (=) Ty (X)W (X)) cOS(2+DQ,, 8’
n=0

+2) (=D T, (X)W1 (X)) cOS(2k +1DQ, '
k=0
U siny(t o
SEVOY oS Cir g (X)), (X, )oos| (2k+ 1), 200, ¢
2441 2 2n 1 ml
k=0

m2

n=1

+ 2 (1) Ty (X)W (X, 008| 2+ DQ,,, £2KQ,,, |¢
k=1

L n=0

sin({nt/T,
where X, = ( MI) il
nt/T, 2

[sin(m/Tmz)] Ao,

(3.10)

B

2

k]

nt/T,, 2
v(1)=Q,t+9, —,, and
t'=t-1/2.

As we can see, the spectrum of the converted signal is quite complicated, each
spectrum component depending on parameters of both modulating functions.
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Certainly, the number of spectrum components that should be taken into con-
sideration to allow for parameters of filtering of the converted signal is signifi-
cantly limited. It is reached by the applicable choice of deviations Aw; and Aw,,
and modulation frequencies Q,,; and Q5.

3.2 LINEAR FREQUENCY MODULATION
In SRR practice, this type of modulation is applied most frequently, especially in
those SRRs using the schemes in Figures 2.3 and 2.4 (i.e., without direct signal
central frequency shift). Therefore, further analysis of the converted signal will be
conducted only for that case. The broad application of a linear frequency modula-
tion is explained by several positive properties of the converted signal correspond-
ing to this modulation, chiefly the constancy of its instantaneous frequency signal
during all periods of modulation, or parts thereof, and its minimum spectral width.
Linear frequency modulation is carried out by three types of modulating func-
tions: a non-isosceles sawtooth function [Figure 3.3(a)], symmetrical (or isosceles)
sawtooth function [Figure 3.3(b)], and asymmetrical sawtooth function [Figure
3.3(c)]. Of these, the last is used most frequently.
3.2.1 Modulation with an Asymmetrical Sawtooth Function
In this case the modulating function of frequency of the transmitted signal is ex-
pressed by

t—nT,
T,

m

r,() = (3.11)

where T,, is the period of the sawtooth function and n is number of that period.
The plot of this function is shown in Figure 3.4(a) (solid line). The frequency
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Figure 3.3

Modulating functions with linear modulation.
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Figure 3.4 Modulating functions: (a) frequency and (b) phase of transmitted and reflected signals,
and (c) and (d) phase of converted signal.

modulating function of a reflected signal is shown by the dashed line.
The modulating function of a radiated signal phase pursuant to (2.6) can be
shown as:
(t—nT,)’
2T

m

F. ()= (3.12)

The plot of this function is shown in Figure 3.4(b).

The modulating function of converted signal phase cannot be written as a sin-
gle expression valid for any time instant. In segments from (n — 4)T,, + 1 to
(n + ¥5)T,, this function, from (2.12), can be written as:

F,n(t,1.-)=Tit—Ti[

m m

%+nTm) (3.13)
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In segments from (n + '4)T,, to (n + Y4)T,, + T, we have

2

T
F(t,t)= 1 ~—— —nt—t+t+nT, -7 (3.14)
T, of 2

A plot of the function F,(r,t) is shown in Figure 3.4(c). As we can see, this func-
tion is piecewise linear, varying between the limits -t(l — /7,)/2 and
(1 — 1/T,)/2, and symmetrical about the point 7 = t/2. Considering (2.17) and dif-
ferentiating (3.13) and (3.14), we obtain expressions for instantaneous frequency
of the converted signal in segments from (n — ¥5)7T,, + tto (n + %) T,,:

Q.(1.7) =[+Q, +AmTi (3.15)
and in segments from (n + A) T, to (n + AT, + T
Q,@,1) =10, +A0)(Ti—l]] (3.16)

We see that the constancy of converted signal frequency on these segments is con-
ditioned on linearity of its phase variations within each segment.

Thus, in this case the converted signal represents a frequency-shift keying os-
cillation, the frequencies of which are determined by (3.15) and (3.16). It is very
convenient that the frequency of the converted signal in segments from (n — ¥4)T,,
+ 1 to (n+ 4T, is fixed and depends linearly on the echo delay. All this permits
deriving the range information. The signal in segments from (n+ '%)7T,, to
(n+ BT, + 1, with frequency expressed by (3.16), can easily be filtered out in the
processing, as its frequency differs little from that of the transmitted signal.

By virtue of periodicity of the modulating function, it is enough for calcula-
tion of the converted signal spectrum to consider the two segments of the function
F,(1,7) plot corresponding to n = 0 and n = 1. It is also expedient to change to a
variable ' = ¢ — 1/2. Then we obtain

£,(,7) :?T—t' (3.17)

m

T T —<t
F.@t=—-1|'+=2 3.18
TENERR 019

m

The plot of this function is shown in Figure 3.4(d).
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The calculation of Fourier series coefficients is carried out using (2.25) and
(2.26). The integration within limits 0 to (7, — t)/2 is carried out with (3.17), and
within limits (7, — 1)/2 to 7,/2 with (3.18). As in this case the function
cosAmF(¢,1) is even, and the function sinA®F(¢,7) is odd, coefficients b, = ¢, =
dy = 0. Omitting the intermediate calculations, we obtain the final expression for
the converted signal spectrum:

AT, sin[ =Af<(1-1/T,) ]
W[M(Tm - t)Aft]
+iAme sin| m(Aft+k)(1-</T,)]
S on[af (T, -1)-k](Aft+k)
+iAme sin[ n(Aft-k)(1-/T,)] cos[
o n[AF(T, -7)+k(Af —k)

cos(Qpt + 9, — 9,)

COS[(ka _QD)t_' (pt +(Po —ka %] (

(kQ, +Qp )t + ¢, - 0, —kQ,, %]J

(3.19)

If the inequality T,, >> t applies, then also AfT,, >> k, and (3.19) is simplified:

[sinmare _
v cos(Qpt + ¢, — @)
= sin[ n(Aft+k)] .
= sin| n(AfT+k) | o o 7l
u =U, +; D) ooS[(kQ,,, Q, )t -0, +¢, m"’z} (3.20)
2, sin n(Aft- k)] .
+;Wc05[(kgm+QD)I+(P,_(P0—ICQME]‘

Let us consider in more detail the last expression. The given spectrum has
several relevant features (Figure 3.5). Consider the last line in (3.20). If in the

sine[Af - (Q-Qp)/ Q]
n[Af—(Q-)7 )
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Figure 3.5 Spectrum of converted signal with modulation by an asymmetrical sawtooth function.
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factor {sin[m(Afr - b)]}/n(Aft — %) the component number k corresponds to the
current frequency rate (i.e., k£ = (Q — Qp)/Q,,), we will obtain the spectral envelope
formed by components with frequencies €, + Qp. The maximum of the major
lobe of the envelope corresponds to frequency Awt/T, + €p, and its base width is
equal to 2Q),. The maxima of the first sidelobes are —~13.5 dB, and of the second
—17.8 dB, relative to the major lobe.

As we can see, within the limits of a major lobe there can be no more than two
spectral components, which contain ~ 85% of the converted signal energy. With
variation of time delay the spectral envelope is displaced on the frequency axis,
and with Aft = k only one component with frequency kQ,, + {2p remains in the
spectrum. Consider in more detail the reason for this. As follows from (3.13) with
T, >> t and Aft = k, the phase of the converted signal within the limits of the
modulation period is inflected linearly on 27k, and at the start of each period the
phase values are identical. Thus, in the absence of motion the converted signal
represents a continuous sine wave without phase jumps. The period of this sine
wave equals 7,,/k and the spectrum, as is known, consists of one component. With
a constant relative target velocity [(2.13), (2.14)], the linear phase change Qp¢ is
added and the spectral component is displaced by the Doppler frequency.

One more idiosyncrasy of the given spectrum is that the amplitudes of spectral
component pairs with frequencies £,  Qp are not identical. The reason for this
can be easily explained. In essence the converted signal represents a succession of
radio pulses with a rectangular envelope, the duration of which is equal to the re-
currence interval. Therefore, the spectrum of the converted signal is the same as
for a succession of such radio pulses. It is known that the envelope of a spectrum
of rectangular pulses succession is described by a function (sinx)/x, and the spec-
tral envelope maximum is at the carrier frequency. Thus, in spite of the fact that
the instantaneous frequency of the converted signal does not fall in the area of
negative frequencies, a definite portion of its spectrum falls in this area (Figure
3.5). With folding of the spectrum about zero frequency, the components with
negative frequencies are located near the corresponding components with positive
frequencies. The second line in (3.20) indicates that spectrum components with
negative frequencies “fold” to the area of positive frequencies.

Thus, there arises a question: on which side from the frequency 42, are the
larger and smaller spectrum components situated? In other words, is the frequency
of the larger spectral components kQ,, + Qp or k€, — Qp? It turns out that this
depends not only on whether the target approaches or recedes (i.e., on the “sign”
of Doppler frequency), but on the slope of the sawtooth modulating function.

To explain this we consider Figure 3.6. In Figure 3.6(a), the plots of con-
verted signal phase changes F,(¢,7) for a fixed target are shown, the sawtooth ris-
ing on the left and descending on the right. In Figure 3.6(b), the same plots are
shown, but with an approaching target. The dashed line is the additional phase
component originating from motion. The negative derivative of this line is deter-
mined by decrease in delay as the target approaches. As we can see, the steepness
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Figure 3.6 Graphs illustrating the influence of Doppler effect on a spectrum of converted signal.

of the segment a-b of function F,(¢,t) was reduced for the plot at the left and was
increased for the plot on the right. Therefore, on the left, the frequency of the con-
verted signal was decreased by the Doppler frequency and the larger spectral com-
ponents have frequency 4Q,, — Qp. On the contrary, at the right, the frequency of
the converted signal was increased and the larger spectral components have fre-
quency kQ, + Qp. In Figure 3.6(c), the same plots are shown corresponding to
receding targets. The situation here is reversed compared with the previous case.
Thus, this property of the converted signal spectrum allows us to determine the
relative velocity of the target and direction of its motion.

As was already stated, in real SRR the ratio T, >> 1 usually applies, and all
calculations of parameters of the converted signal are based on this conjecture. For
example, (3.20) was obtained from (3.19) in this manner. Actually, this means that
we neglect the segments from (n + 2)T,, to (n + %4)T,, + 1 of the converted signal
as being negligible compared with the period of modulation.

In this connection it is desirable to have a quantitative assessment of admissi-
bility of ratio 7, >> t. This estimation is easy to perform using (3.19), which is
valid for any ratio of 1/T,,. The criterion for assessment can be the extent of varia-
tion of the converted signal spectrum with the ratio /7.

For calculation we assume any fixed value Aft, for example Aft = 10. Then in
the spectrum, according to (3.20), only the component with frequency 109, + Qp
and relative amplitude of unity is present. The calculation of the spectrum from
(3.19) with particular values t/T,, permits us to judge the differences from those
based on (3.20) and to determine acceptable values of /7, at which it is possible



Characteristics of the Converted Signal with Different Transmitter Modulations 39

to consider the inequality 7,, >> 1 to be valid. The results of the calculations are
listed in Table 3.1, where & is number of the spectral component and y = /T,

Table 3.1

Variation of Spectral Components with Ratio y = /7,

¥y k=8 k=9 k=10 k=11 k=12
0.0t -40 -0.09 —40

0.05 —46 ~26 -0.44 -26 —46
01 -20.4 -20 -0.9 ~-20 =225
0.2 —-15 -14.4 -1.9 ~-14.9 -16.8

The values of amplitudes of the corresponding spectral components are given in
decibels relative to unity. As we can see in the table, already for y = 0.05 the spec-
tral components £ = 9 and £ = 11 are at a level —26 dB relative to the maximum.
Fory=0.1, components k=9 and 11 as well as £ = 8 and 12 are significant.

Thus, it is possible to consider the inequality 7,, >> t valid if the period of
modulation is greater than 10 times the maximum time delay of the echo signal. In
radio-wave SRR this ratio is easily obtained, as a rule, in the absolute majority of
cases. In ultrasonic SRR this ratio is obtained only with great difficulty, especially
during operation in a gaseous medium.

The spectrum of the converted signal when 7,, >> 1t does not apply is subject
to the same relationships as are established above. However, because of reduced
duration of the converted echo in segments from (n — 5)7,, + 1 to (n + %)7T,,, the
major lobe of spectrum envelope is reduced and the spectral components applica-
ble to frequency in segments (n + '4)T,, to (n + '4)T,, + 1 increase. The spectrum is
distorted to the greatest degree when 1= T,,/2.

3.2.2 Modulation with Non-Isosceles and Symmetrical Sawtooth Functions

For modulation with a non-isosceles sawtooth function [Figure 3.3(a)] the modu-
lating function of transmitter frequency can be written as:

1 2
Y"(t)_(;‘l)"-—l—l-—m[it_nj (3.21)

where # is the number of a segment on the time axis, within which lies the value of
a current time f; and o is a coefficient between 0.5 and 1, such that for o = 0.5 the
non-isosceles function becomes symmetrical and for a = 1 asymmetrical. We will
perform analysis of the converted signal assuming that the condition 7, >> 7 is
satisfied. Then, on the basis of (2.19) we obtain at once
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Jo O T — i(x—fj—n (3.22)
(- —1+2a| T,

Using (2.22), we obtain the expression for instantaneous frequency of the
converted signal:

Aot 2
Q¢ =2Q,+ 3.23
(6T =20+ [(—1)"—1+2aJ G239

In this case the converted signal represents frequency-shift keyed oscillations, the
frequency of which varies by jump and is equal to

Q =Q,+ A—O;‘t in the segments with even n (3.24)
a m
, =5 __Aoet in the segments with odd n (3.25)
(-7,

The spectrum of the converted signal is calculated in the same manner as with
modulation using an asymmetrical sawtooth function. Neglecting subproducts, we
write the final expression for converted signal spectrum:

sin TAft
u =U, v cos(Qpt+¢, —@,)

2| sinm(Aft+ka) . sinw| Aft—k(1-a)]
+U'z{°‘ n(Af7+ko) +) () [ Aft-k(1-a)] }
xcos[ (kQ,, — Q) )t~ + ¢, —kQ,t/2]  (3.26)
= | sinm(Aft-ka) . sinn[Afr+k(l—a)]
Z{a n(Aft—ka) +(_1 J(1-<) n[Aft+k(l1-a)] }
xcos[(ka+QD)t+<pt—(p0—kaT/2]

k=1

+U

t

k=1

As expected, there are two maxima in this spectrum (Figure 3.7) in the area of
frequencies (3.24) and (3.25). As contrasted to the spectrum for modulation by an
asymmetrical sawtooth function, the major lobes of the spectral envelopes in the
area of these frequencies are broader. This is explained by the fact that the dura-
tion of segments of the converted signal with frequencies (3.24) and (3.25) is less
than a period of modulation.
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Figure 3.7 Spectrum of converted signal with modulation by a non-isosceles sawtooth function.

Assuming in (3.21) - (3.26) that o = 0.5, we obtain similar expressions for
modulation with an isosceles sawtooth function:

.0 =(-1)" (it_,,) (3.27)
T”l
F, (0= (-1) -2—(t—£]—n (3.28)
T 7.\ 2 '
(0 =|0, +(-1)" 2/;“" (3.29)

From (3.29) it follows that the frequency of the converted signal within the limits
of one half-cycle is fixed and its values in adjacent half-cycles differ by 2€p.
The spectrum of the converted signal can be written in the following way:

in TA

u =U, §-E:;£c}—{—zcos(QDr+(pr =y
i smn(Aft+k/2)+(_l)k sinn[Aft-k/2]
| 2n(aferki2) 2n[Aft—k /2]

xcos[ (K2, ~ €, )t -, +, —kQ, /2] (3.30)
o sinm(Aft-k/2) sinn[AfT+k/2]
Z{ 2n(Aft-k!2) DL 2rn[Aft+k/2]

xcos[ (kC1, +Q, )t +o, —¢, —kQ,1/2]
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Figure 3.8 Spectrum of converted signal with modulation by an isosceles sawtooth function.

In Figure 3.8, this spectrum looks like the spectrum for modulation using an
asymmetrical sawtooth function. However, the maxima of the spectrum corre-
sponds to twice the smaller value of product Aft. This is explained by the fact that
the slope of a symmetric function is double that of an asymmetrical one. The am-
plitudes of spectrum component pairs with frequencies kQ,, + Qp and kQ,, — Qp
are identical.

33 DISCRETE MODULATION

One of the major problems that should be solved in SRR design is that of deriving
a more linear and stable modulation characteristic of the FM oscillator. One of the
possible paths to the solution of this problem is applying a frequency synthesizer
as the FM oscillator. Controlling in an appropriate way the frequency of the syn-
thesizer output, it is possible to realize ideal precise frequency control for any
modulation. For example, changing the frequency after a definite time period by a
constant value makes it is possible to obtain ideal linear modulation. However, in
this case the output signal appears quantized in frequency.

In Figure 3.9(a) there is a plot of synthesizer frequency against time, applica-
ble to modulation with an asymmetrical sawtooth function. Here it is appropriate
to point out that at transferring from one frequency to another there should not be
phase discontinuity in the output of the synthesizer; otherwise there will be com-
plete destruction of the converted signal. It is apparent that the same dependence
will be obtained by modulating the usual oscillator with an ideal linear modulation
characteristic for a “stepping” asymmetrical sawtooth function.

Thus, as discrete modulation is technically possible, it is necessary to consider
properties and arguments of a converted signal for such modulation. We will con-
duct analysis of the converted signal using an example of asymmetrical sawtooth
modulation.
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Figure 3.9 Discrete modulating function and section of the converted signal.

Let us assume that in a period of modulation 7,, there must be g discrete val-
ues of frequency, and that the ratin 7,/q >> t applies. Thus, a ratio T, >> T cer-
tainly applies. How will the converted signal appear in this case?

With the usual modulation the converted signal repeats sections of a sine
wave of duration 7,,. With discrete modulation, according to (2.20), the phase of
the converted signal is changed by a modulating function. Therefore, the converted
signal will appear as a stepping sine wave [Figure 3.9(b)]. If the sine wave with
such digitization does not loose 1ts shape (i.e., remains “on average” as a sine
wave), the stepping is easily removed by appropriate filtering of the converted
signal. This qualitative reasoning allow us to draw a conclusion about the necessity
of deriving quantitative results.

In essence the problem is reduced to determination of an indispensable mini-
mum number of quantization steps in the period of modulation, for which the con-
verted signal distortion is within tolerance limits. Here it is important to note that
the given problem has nothing in common with the problem described with the
known Kotelnikov theorem. This theorem establishes the connection between the
width of a continuous signal spectrum and the number of samples necessary for
discrete representation of this signal. In other words, here the signal is already
present and is introduced in analytical aspect.

In our case the discussion is about signal conditioning with admissible distor-
tions. A discrete process is introduced in one signal (modulation), and the distor-
tions are completely calculated for the other (converted) signal.

First of all, we note the clear fact that if the duration of each quantization step
is commensurable with a period of the sine wave of the converted signal (not with
a period of modulation!), there will be a significant distortion of the converted
signal because of phase jumps. Thus, the following inequality should be met:

T

—"‘>zwl or g>k (3.31)
kg
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where k is the number of the spectral component with maximum frequency (i.e.,
applicable to the maximum measured range interval).

For further analysis, we will represent one period of a stepping modulating
function ¢ by the sum of two functions (Figure 3.10):

T T

v(t)=yl<t)+y2(t>=i—(i—nzj (332)
where n, is the period number of the second function, which is T, = T,/g. If the
limits of the variations in the definition of the first function are equal 0.5, then for
the second they are +0.5/q.

With such definition of the modulating function, the spectrum of the con-
verted signal is equal to the product of the spectra defined by (3.19) or (3.20), de-
pending on whether the ratio T, >> 1 is valid or not. The fact is that with a large
number of quantization steps this ratio can be valid for the first function and not
for the second.

Let us note also that in calculating parameters of the second spectrum it is
necessary to have the value of products Af;t = Aft/q, as the amplitude of the sec-
ond modulating function is g times less than the first.

For calculation of the spectra we will take into account also the following cir-

cumstance. If the condition g > k is always satisfied, for any value T,

A=Yk (3.33)
9 4

Therefore, in the second spectrum the basic role is played by the first term, as all
others are much less, and the spectrum of the converted signal is equal to the prod-
uct of the first spectrum and the amplitude of the first member of the second
spectrum.

Let us consider now two cases, when the condition 7,/q >> 7 is valid and
when it is not. Let us assume that condition T,,/q >> t is satisfied. Then the ampli-
tude of the first member of the second spectrum is determined by (3.20) and is
equal to

Figure 3.10 Representation of the discrete modulating function by the sum of two sawtooth func-
tions.
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sin(ndfyr) _sin(wk/q) 1_0.166[1"_) (3.34)

nAf,T nk/q q
For approximation of this functiont we used the known relationship

SIX o 1-0.166x% +0.0076x* for 0 < x <g
X

Assuming, for example, that in (3.32) (sinx)/x < 0.95, we obtain g/k > 6. Accord-
ingly, for (sinx)/x =0.99, g/k ~ 12.

Now we assume that the condition T,/q >> 7 is invalid. The greatest departure
from this condition is reached at T,, = T,/q = 2t. Having taken advantage of
(3.19) and allowing (3.33), we obtain

AfT,, sin[ 7Af3(1-1/7,,) | sin(nk/2q)
n[Afz T, - t)Afz't] nk/2q

2
;1—0.166("—") (3.35)
2q

As we can see, in this case the requirements for the ratio g/k are half as strict as for
the previous case. This is explained by the fact that in implementation of this ratio
the converted signal consists of sections of a sine wave of duration 7,,,/2 and fre-
quency Af;. The phase of sine waves in adjacent sections differs by 180°, and this
is equivalent to twice the number of quantization steps.

From these calculations the deduction follows that the digitization of a modu-
lating function does not practically change the parameters of the converted signal,
if the number of quantization steps in a modulation period is at least an order of
magnitude greater than the maximum number of the spectral component of the
converted signal (i.e., g/k > 10).

34 EFFECTS OF TRANSMITTER MODULATION NONLINEARITY
ON CONVERTED SIGNAL PARAMETERS

The modulation characteristics of all known FM oscillators are nonlinear to some
extent. The typical modulation characteristic is a curve whose derivative decreases
with increasing frequency (Figure 3.11). The magnitude of the nonlinearity is usu-
ally defined as a ratio of maximwm error in modulation characteristic to its width
(i.e., to a tuning frequency range). This ratio is expressed as a percentage.



46 Fundamentals of Short-Range FM Radar

ﬂ

—~

e T ]

Figure 3.11 Typical modulation characteristic.

In some cases, especially for oscillators with large tuning ranges (a few GHz),
the modulation characteristic represents a log-log curve with a set of short seg-
ments, between which the derivative changes not only in magnitude but also in
sign. The departure from its average value can then reach a few percent of the os-
cillator tuning range.

To elaborate any general theory of the effects of nonlinear modulation charac-
teristic on the converted signal makes no sense for several reasons. First, it is very
difficult to obtain an analytical expression describing a real modulation character-
istic. Second, even if that can be done, it is very difficult to calculate the converted
signal, for this case, and most importantly, this effort makes no sense at all, as the
oscillator modulation characteristic varies during operation.

At the same time, there is definite interest in making an estimate of the effect
of modulation characteristic nonlinearity on the converted signal. We will make
this estimate as follows. Let us consider the modulation characteristic of the oscil-
lator as ideally linear, and to the linear modulation function we will add a term
representing nonlinearity. Then the calculation of the converted signal will be re-
duced to calculating this signal with dual modulation. The method of conducting
this calculation is particularized in Section 2.5.

As a linear modulation function it is most convenient to use an asymmetrical
sawtooth function. With this modulation, as was shown above, the converted sig-
nal has the most compact spectrum, considerably easing calculation. As the error
term we may use any monotonic even function. The choice of this function is de-
termined primarily by convenience and by the possibility of a solution.

Let us use as the accessory term the half-period of a cosine. Then the modulat-
ing function of oscillator frequency can be introduced as

y(t)=Ti+vcosTit for ~T,/2<t<T,/2 (3.36)

m m

where v is a coefficient describing nonlinearity of the modulation characteristic.
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As we can see, a dual modulation takes place in this case. For further calcu-
lation let’s assume that the ratios [, >> 1 and Aft = k are valid, so that, as was
established above, there is only one component with frequency £kQ,, + Qp in the
spectrum of the converted signal. Thus, the calculation will be considerably sim-
plified and distortion of the spectrum of the converted signal will be most obvious.
Let us assume also that Qp + ¢, - ¢, = 0. This is acceptable, as the given problem
is not to obtain a precise expression for the spectrum, but only an estimate of pos-
sible distortions. It also will simplify calculation.

Using (2.22) and (3.36), we obtain the expression for instantaneous fre-
quency of the converted signal

Q,(1,1)=Q, |Af t— vrAfTsin(nt/ T,,)| (3.37)

For calculation of the spectrum we use (2.31), (3.6), (3.7), and (3.20). Skipping
intermediate, elementary enough calculations, we produce a final output:

u =U, {Jo(vAwr)coanmf+i(—l)"]zn(vAmt)cos[(ktn)Qm]t} (3.38)

n=|

Let us perform calculations with these formulas. We assume that the modeled
nonlinearity of the modulation characteristic is ~0.02 (i.e., only 2%). Then
v =10.02. From (3.37) we find that the relative variation of instantaneous frequency
at the ends of the modulation period is

VYT nx46% (3.39)

As we can see, even the small nonlinearity of modulation characteristic results in
considerable variation of instantancous frequency of the converted signal.

The spectrum of the converted signal is also exposed to considerable distor-
tion. From (3.38) it follows that with an ideal modulating characteristic (v = 0)
there is one component in the spectrum with frequency i€}, applicable to the as-
sumed condition Aft = k.

In Figure 3.12 the results of calculation with (3.38) are shown. On the ab-
scissa is the number of the individual spectral component for a linear modulation
characteristic. On the ordinate the relative amplitude of spectral components is
plotted. The curves shown in this plot naturally are determined by the assumed
approximation. However, it is not details of the curves but the tendency of their
variations that are relevant in this case.

As we can see, with an increase in k the basic component is reduced and near
it there are two components whose frequencies are (k + 1)Q2,,. The magnification
of spectral distortion with increasing instantaneous frequency of the converted
signal is explained by increase in the absolute value of instantaneous frequency
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change. So for k = 1 the instantaneous frequency will vary by ~0.06 2, , and for
k=20by~Q,,.

This calculation allows us to draw the conclusion that the modulation charac-
teristic of the transmitter is one of its major parameters. The linearity of this char-
acteristic and its stability depend on the structure of the converted signal process-
ing block, the measuring error of range and speed, the required magnitude of fre-
quency deviation, and many other SRR parameters.

U/Ue
v=2,4%

05

Figure 3.12 Distortion of the spectrum of the converted signal.



Chapter 4

Integrated Methods of Converted Signal
Processing

4.1 GENERAL DESCRIPTION

Integrated methods of converted signal processing are defined to be methods in
which all signal parameters (i.e., armplitude, frequency, and phase) will be utilized
for processing.

As follows from material in Chapter 2, the information on range and relative
velocity of the target is contained in the phase, and therefore in the frequency of
the converted signal. It is impractical to utilize the amplitude of the converted sig-
nal for deriving range, as this depends not only on range but also on the magnitude
of the reflected signal, which, in turn, depends on the effective cross section of the
target.

Use of the range dependence of the instantaneous frequency of the converted
signal is the most commonly used method of the signal processing in SRR. This is
because range finding by measuring a frequency difference between transmitted
and reflected signals is straightforward, though it has not always been imple-
mented correctly. For many years the theory and the practice of FM SRR was de-
veloped on the basis of this methed of processing, achieving significant success,
although not without errors and unexpected peculiarities.

For example, the author of one patent based his invention on the fact that the
instantaneous frequency of the comverted signal depends on range continuously
and linearly (evident from the drawing). Therefore a “simple and effective”
method of range finding was propcesed: to pass the converted signal through a nar-
rowband filter with a bandpass much less than the modulation frequency. This
filter was offset from the instantaneous frequency of the converted signal by an
amount depending on the target range. As the filter was narrowband it was possi-
ble to relate the instantaneous frequency to the range with great fidelity. The mis-
take of the author of this patent is obvious. It is enough to consider the converted

49



50 Fundamentals of Short-Range FM Radar

signal spectrum: the signal at the output of the filter will occur only when it is
tuned to frequencies of the target spectral component. At the same time the idea of
the author is not lacking in common sense; it is necessary only to apply another
method of converted signal processing (which will be discussed in Section 4.4.2).

For a long time in many scientific publications, the problem of an ostensible
inherent granularity of range readout in FM SRR and a resulting error bound was
considered. However, the appearance of this error is conditioned on rather coarse
methods of processing the converted signal. Hence, this error can be considered as
dependent on the processing method, but inherent in some cases.

Phase-frequency processing of the converted signal has one very relevant and
fundamental feature: with this method of processing it is impossible to realize
resolution of targets in range. Therefore this method can be applied only in cases
where (a) it is known that there is only one target in the beam, or (b) it is unneces-
sary to resolve targets in range.

It is widely known that FM SRR is used in radio altimeters and liquid-level
meters, in systems for collision avoidance in transportation facilities, in parking or
mooring, and in measuring distances to walls of buildings or artificial reflectors
(for example, corner reflectors). The need for range resolution often precludes the
application of FM SRR in security systems.

Let us consider this problem in more detail. Assume that there are two targets,
which are at random ranges from the radar within its operating zone. In this case
three signals (Figure 4.1) act on the mixer: a direct signal Uy, and reflected signals
Uy, from the first target and U, from the second. The vector of the direct signal is

considered fixed. Then the angles ¢,(z1;) and @u(#,1,) are given by (2.10). The
total vector is

U; =(U, +U, cos@, +U,,cos 9, )2 + (U, sin@, +U,,sin (9:2)2 (CRY

or

U; = \/Uj +UA+U%L +2U,U, cos @, + 2U,U,,cos,, +2U,U,, cos(¢, —¢,,) 4.2)

Assuming that U, >> U, , and that the mixer consists of a nonlinear element

and lowpass filter, we obtain the converted signal at the output of the mixer:

Figure 4.1 Phasor signals from direct component and two targets.
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U, zU, cose, +U ,cosp, (4.3)

1

From (4.3) it follows that the principle of superposition of the converted signals is
applicable (i.e., the voltage output of the mixer is the sum of the voltages of the
converted signals of the individual targets). As these signals exist simultaneously,
it is possible to distinguish them only through differences in their spectra.

Let us consider the possibilities of using the converted signal parameters for
measuring range and velocity. For this purpose we will refer to the formulas of
Chapter 2. First, we notice that there appears in all formulas defining parameters
of the converted signal the product of a frequency deviation of the transmission
and target-echo delay time Awt. Therefore, two methods of using the converted
signal parameters are possible.

The first method assumes that the deviation is fixed. Then it is possible to util-
ize dependence on t of the converted signal frequency deviation, its instantaneous
frequency, or phase shift for a modulation period.

The second method is that with variation in t, some parameter of the con-
verted signal is maintained constant by varying the frequency deviation. Hence the
magnitude of the deviation (technically the magnitude of a modulating voltage or
current) is a measure of the delav time (i.e., target range). In this it is naturally
assumed that the modulation characteristic of the transmitter is stable.

A discriminator sensitive to the applicable parameter is necessary for opera-
tion of a deviation feedback system. The simplified block diagram of an SRR with
this method of processing is shown in Figure 4.2.

Instantaneous frequency and, accordingly, phase shift also depend on relative
velocity (i.e., from the Doppler eifect). On the one hand this allows us simultane-
ously to obtain range and velocity. But, on the other hand, it can produce an addi-
tional error in range measurement if we fail to apply the applicable measures for
the separation of Doppler effect from range measurement.

Transceiver
antenna

-1 Mixer a1 Amplifier —=} Discriminator

FM transmitter Modutator e

Display

Figure 4.2 Block diagram of SRR with deviation feedback system.
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4.2 EFFECT OF PARASITIC AMPLITUDE MODULATION OF THE
TRANSMISSION ON OPERATION OF THE SRR RECEIVER

4.2.1 General Description

As was noted in Chapter 2, one of features of the FM SRR receiver is use as a het-
erodyne signal of a part of energy of the transmission. Even in dual-antenna sys-
tems, part of the transmission couples directly between the transmitting and receiv-
ing antennas. This has been termed transmitter spillover. The presence in the re-
ceiver of these signals creates definite problems in receiver operation. As W. K.
Saunders notes in Skolnik’s Radar Handbook [1] “the history of CW radar shows
a continuous attempt to devise ingenious methods to achieve the desired sensitivity
in spite of spillover.”

More recently the seriousness of this problem has been significantly reduced.
Nevertheless, it had previously been one of the most relevant problems affecting
SRR design. Therefore, before considering different methods of converted signal
processing, it is necessary to analyze the influence on receiver operation of trans-
mitter spillover.

At first we will consider the dual-antenna version of the block diagram with a
shift of the direct signal center frequency (Figure 2.2). Here, because of poor de-
coupling between antennas, a part of the transmission enters the receiving antenna.
As spacing between antennas is insignificant, this signal is equivalent to a target
echo from zero range. If there were no frequency shift of this spillover it would not
introduce any special hazard into the receiver. It could only, being added to the
direct signal, change the operating point of the mixer. But the mixer operating
point can be always corrected, taking into account the level of spillover.

If there is frequency shift, two FM signals with in-phase modulation act on the
mixer, and the center frequencies of these signals differ by the magnitude of an
offset 8. As a result, a sinusoidal signal with frequency 8w appears at the mixer
output. This signal can seriously affect receiver operation. Obviously, this signal
cannot be filtered, as it is at intermediate frequency. It is possible only to cancel it,
using for this purpose a signal with frequency 8w available in the block providing
frequency shift of the direct signal.

In all events, the decoupling between antennas should be of the same order of
magnitude as target echo attenuation. Inevitably this is a major deficiency of this
SRR version.

The signal of any unmodulated or FM oscillator is always accompanied by
parasitic fluctuating amplitude and phase modulation. Because of an incidental
phase modulation, the frequency of the oscillator fluctuates, but this does not have
any influence on SRR operation.

Nor does fluctuating amplitude modulation cause noticeable effects on re-
ceiver operation, in spite of the fact that there is amplitude detection of the direct
signal in the mixer. This can be explained as follows. The spectral density of
an amplitude fluctuating modulation spectrum for the majority of oscillators is



Integrated Methods of Converted Signal Processing 53

approximately —150 to —160 dB/Hz. The attenuation of a target echo relative to
the transmission varies for SRR approximately from 50 up to 110 dB. The direct
signal is reduced relative to the transmission by approximately 30 dB. The equiva-
lent noise bandwidth of the receiver usually does not exceed 10 kHz. Let us con-
sider that the transmission factor of the mixer in its conversion and detection re-
gimes are identical. It is actually riot but for an estimation this is adequate. Thus,
the noise power at the mixer output, relative to power of the radiated signal is
—150 — 30 + 40 = —140 dB, or 30 dB less than the power of the converted signal.

A much more serious danger for the receiver is introduction of parasitic am-
plitude modulation (PAM), which tracks with frequency modulation. The coeffi-
cient of this PAM can reach several percent. Thus, the PAM signal power is 30 to
40 dB less than the power of the direct signal, or some 50 to 60 dB less than the
power of the transmission. Hence the PAM signal can exceed a useful signal by 40
to 50 dB. Obviously, a parasitic signal with such level above a useful one will
completely destroy the normal operation of the receiver if necessary actions to
prevent this are not taken. It is necessary to note that the above-mentioned data is
referring to the worst case.

The PAM signal structure is defined by the amplitude-frequency characteristic
of the FM transmitter. A typical amplitude-frequency characteristic is shown in
Figure 4.3(a). As we can see, it is a domed curve with a maximum at the center
frequency and with a large degree of symmetry about that frequency. The signal
power reduction at the edges of tuning range usually does not exceed 5% to 7 % of
the maximum. A more variable amplitude characteristic is shown on Figure 4.3(b).
It has a random nature and is characterized by fluctuations of the oscillator regime.
The level of these fluctuations is usually 30 to 40 dB below the regular PAM
component.

The characteristics of the PAM signal are defined by both the shape of the
transmitter amplitude characteristic and its modulating function. Relative smooth-
ness and good symmetry of the amplitude characteristic cause the overwhelming
part of the PAM signal energy (90% to 95%) to be concentrated in the first three
or four harmonics of its spectrum. The remaining fraction of signal energy will be
distributed rather uniformly among a large number of higher harmonics.
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Figure 4.3 Typical amplitude-frequency haracteristic.
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Figure 4.4 Typical PAM spectra at mixer output.

As an illustration, the real spectrum of the PAM signal at the mixer output of
a radio-frequency block of an SRR is shown in Figure 4.4. The SHF block was
based on the standard single-antenna version (Figure 2.4). The FM generator is a
Gunn diode operating at 8-mm wavelength, a horn antenna is used with half-power
beamwidth 6°, the mixer is one-stage with diodes, and asymmetrical sawtooth
voltage modulation was used.

As we can see, the second harmonic of the PAM spectrum is maximum at a
frequency deviation of 100 MHz, because of symmetry of the oscillator amplitude
characteristic. Also, the spectrum in the area of the first harmonics is slightly wider
than that of modulating signal. The voltage of higher harmonics does not exceed
100 pVv.

For a frequency deviation of 5 MHz, the nature of a spectrum changes. With
such deviation it is possible to consider the modulation characteristic linear, and
therefore the PAM signal reproduces the shape of a modulating signal (i.e., an
asymmetrical sawtooth). Accordingly, the spectrum of the incidental signal to
some extent reproduces the shape of the modulating signal spectrum. The largest
harmonic now becomes the first, and the voltage of harmonics beyond the third
does not exceed 10 pV.

For estimating the levels of converted and PAM signals we will show the re-
sults of measuring signals obtained at the mixer output of the same UHF block.
The converted signal was measured for the following targets:

(a) Reflection from a smooth metallic sheet, at 2m range from the antenna
aperture, producing a converted signal voltage of approximately 70 mV;

(b) Reflection from a reinforced-concrete wall, 10m range, 15 mV;

(c) Reflection from a brick building, 80m range, 0.8 mV.
The frequency deviation in these cases was 150, 30, and 5 MHz, respectively.

4.2.2 Methods of Decreasing PAM Signal Effects on Receiver Operation

Methods of reducing PAM signal influence can be divided into two categories:
direct and indirect. Direct methods are defined as those that reduce the PAM level
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of the oscillator output or the direct signal. SHF signal power-level limiting de-
vices or automatic power-level stabilization may be used for this purpose How-
ever, as a rule, these methods do not give the desired result but only complicate the
SHF unit. Limiting devices react only slightly to minor variations of power and
decrease the PAM factor by such small factors that they are completely inadequate
in most cases.

Automatic power-level stabilization systems require very large amplification
in the feedback circuit because of the low error signal. It is thus difficult to provide
system stability. Besides, even it the oscillator were to have no PAM at all, it
would arise with FM because of the resonant-frequency behavior of the direct sig-
nal channel.

Indirect methods of reducing PAM influence are most effective. Because the
useful and parasitic signals are present at the mixer output simultaneously, they
can only be separated by using differences in their spectra. The best approach in
this respect is the system with frequency shift of the forward signal (Figure 2.2). In
this version the spectrum of the P AM signal at the mixer output is in the region of
the modulation frequency, while the spectrum of the useful signal is in the region
of frequency &w. Therefore it is possible to provide good separation of these sig-
nals with a simple filter. The main danger for the receiver in this version is the
spillover between the transmitting and receiving antennas.

The easiest way to reduce the level of the parasitic signal is to suppress sev-
eral first spectrum components of the converted signal, where the basic energy of
the PAM signal is concentrated. So, for example, for a signal consisting of an isos-
celes sawtooth, 99% of energy is concentrated in the first three harmonics of its
spectrum. Therefore this simple method appears quite effective in most cases. Ob-
viously in this approach there is 2 dead band, the extent of which is defined by the
magnitude of the frequency deviation and the number of saturated components. If
the dead band is too great, it is possible to divide the operation of the receiver into
two regimes: short ranges, where the ratio of a useful to parasitic signals is large
enough without suppression of the first components, and longer ranges at which
suppression is required. The reduction of PAM signal can be made effective
enough by applying an irregular Irequency response curve to the converted signal
amplifier.

As is known, for an irregular target the power of its echo varies inversely with
the fourth power of range. The maximum of the converted signal spectrum is dis-
placed in frequency by an amount that is directly proportional to range. Therefore
it is necessary to increase the gain of the converted signal amplifier by 12 dB per
octave to maintain the converted signal level more or less constant. For this pur-
pose its frequency response should be appropriately reshaped. This is equivalent to
the sensitivity time control used in pulse radar.

For short-range radar systems, a reduction of the effective target cross section
often accompanies reduction in range. This is explained by reduction in the area of
the illuminated surface, especially with narrow antenna patterns. In this case, the
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power of a target echo varies approximately in inverse proportion to the third
power of range, and the gain of the amplifier is increased by 9 dB per octave.

As the gain of the amplifier is reduced with decreasing frequency, there is a
suppression of the most intense harmonics of the PAM signal spectrum. It is pos-
sible to judge performance of this suppression with simple calculations. Let us
assume that the power of a target echo varies inversely with the third power of
range. Then the normalized frequency response of the converted signal amplifier is
written as

32

K =(F/F,.) (4.4)

where Fo,, is the frequency applicable to the last component of the converted sig-
nal spectrum. In terms of the modulation frequency

K =(k/n)" 4.5

where k is the number of the current component and # is the number of the largest
component of the converted signal spectrum.

Let us assume that the amplitude characteristic of the oscillator is linear and
that the modulation takes the form of an asymmetrical sawtooth function. This is
the worst case, in which the largest parasitic signal is received. The attenuation of

the parasitic signal is
,/ZUE
A k=1

=t (4.6)

where U, is the effective voltage of the kth harmonic of the parasitic signal spec-
trum at the output of an amplifier with an irregular amplitude-frequency character-
istic, and U, is the effective voltage of the parasitic signal at the amplifier output
with a flat amplitude-frequency characteristic. This voltage is equal to the rms
voltage of a sawtooth signal with unit amplitude, which is 1/ V3.

As is known, the Fourier-series expansion of a sawtooth function with unit
amplitude is expressed as

2&1
y—;z— @.7

Then, with allowance for (4.5), the effective voltage of kth harmonic of the para-
sitic signal spectrum at the amplifier output is

2k3/2 \/ﬁ

£ 2mkn T (4.8)
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Substituting (4.8) in (4.6), we obtain

4-202D (4.9)

nn

Figure 4.5 shows as curve 1 « plot of the coefficient 4, based on (4.9). A simi-
lar calculation for modulation using an isosceles sawtooth function gives the fol-
lowing expression for the coefficient 4

- 04,2 +O.5131/12[(n+1)/2] @.10)

n

The resulting plot is shown as curve 2 in Figure 4.5. As we can see, the amplifier
with an irregular frequency response decreases the parasitic signal by 20 dB or
more.

With a linear oscillator amplitude characteristic the available decrease is not
so large (curve 1), but a linear amplitude characteristic corresponds to a small fre-
quency deviation, for which the PAM coefficient is small. With large values of
frequency deviation the amplitude characteristic is more or less symmetrical, and
therefore the PAM waveform even with modulation by asymmetrical tooth volt-
ages comes nearer to an isosceles sawtooth. A large reduction of the parasitic sig-
nal (curve 2) can be reached in this case.

A rather effective method of reducing the PAM signal is to use rejection fil-
ters attenuating the first, most intensive harmonics of the PAM spectrum. How-
ever, up until the present time this method has not found wide application because
of serious engineering difficulties in its realization. First, the rejection band should
be as small as possible. Otherwise, at small Doppler frequencies there will be sup-
pression of the converted signal. ‘Therefore, the Q-factor of filter resonant elements
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Figure 4.5 Attenuation of parasitic sigral.
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should be rather high — about several hundreds or greater. In the range of custom-
ary modulation frequencies, from hundreds of hertz up to tems of kilohertz, it is
very difficult to realize such Q-factors.

Second, when the rejection band is narrow, rigid requirements are placed on
mutual stability of filter resonance frequency and modulation frequency. Of
course, these requirements can be satisfied with crystal filters and quartz-crystal
control of the modulation frequency. However, such filters are very cumbersome
and expensive.

The so-called synchronous rejection comb filter, based on switched capaci-
tors, is free of all these deficiencies. The detailed theory of synchronous filters
based on switched capacitors is explained in the special literature of the theory of
active filters, and is not considered here. High stability of the comb-rejected fre-
quencies, with a Q-factor of some thousands and simplicity of realization, favora-
bly distinguish these filters from analog and digital rejection filters.

In Figure 4.6 the block diagram of one of the optional versions of such a filter
is shown. The principle of operation of this filter is as follows. The sum of the
useful signal and a periodic disturbance is applied to the input of the sample-and-
hold block. From the output of this block, the voltage, sampled in time and fixed at
a level, passes to the synchro-switched RC-filter composed of N identical capaci-
tors, controlled with switches, and thereafter to resistor R. The operation of the
filter is controlled by a pulse distributor, to the input of which a clock signal gen-
erator reference voltage is applied. The pulse repetition frequency of this oscillator
exceeds by the factor N the rejection frequency for the first harmonic of a distur-
bance. The number of rejection channels N, of such filters depends on the number
of switched capacitors and is set to N, < N/2. The rejection band at the —3 dB level
is identical in all rejection channels and is Af  1/aNRC. For example, with
N=16,R =100k, and C= 10 nF, Af = 20 Hz. The depth of rejection is about 60
dB. In Figure 4.7 the sample normalized amplitude-frequency characteristic of the
filter is shown. This characteristic is practically unchanged when the clock signal

C2
Input | Sample-and-hold ———-l I-—c- Switch Output
‘ block *
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Pulse distributor Clock generator

Figure 4.6 Synchronous rejection comb filter based on switched capacitors.
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Figure 4.7 Frequency response of synchronous comb filter.

generator frequency changes by a reasonable factor. Accordingly, the frequency of
each rejection channel is changed by that same factor.

Hence, if the clock signal generator is synchronized to a modulating signal or
if the clock pulses are reshaped from a modulating signal, the frequencies of rejec-
tion channels will correspond precisely to frequencies of harmonics of the PAM
signal spectrum.

As we can see, the application of a synchronous rejection filter enables effec-
tive suppression of a PAM signal by rather simple means. Certainly, together with
the PAM signal, the applicable harmonics of the spectrum of the useful signal
from fixed reflective targets are suppressed. Thus, the radar becomes “blind” to
fixed targets at specific ranges. As the first harmonics are suppressed, as a rule the
station will become “blind” to the nearest targets, as those go into the blind range
regions. In some cases this can be useful, as selection of moving targets in a back-
ground of nearby clutter is obtained.

If this is inadmissible, it is possible to imitate Doppler shift by applying a
dual modulation to the transmission. The frequency of the additional modulation is
selected to equal a cloned Doppler frequency. The deviation of additional modula-
tion is selected such that at the greatest measured range the maximum of the first
harmonic of the converted signal spectrum from this modulation is reached. Thus,
we conclude that there are adequate methods of receiver protection from PAM
signals. In other words, the devil is not so terrible as he is painted!

43 STABILIZATION OF THE FREQUENCY DEVIATION

As was noted earlier the majority of converted signal parameters which will be
used for ranging depend on product Awt. During SRR operation a modulating
voltage (or current) as well as the modulation characteristic of the transmitter can
vary, and hence the deviation will not correspond to the nominal value. Obviously,
this will lead to an additional measuring error in range.
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If the allowable relative range error is level 5% to 10%, it is not necessary in
most cases to undertake any special measures for stabilizing the nominal value of
deviation. Otherwise, it is necessary either to stabilize the deviation or to measure
the true value of the deviation and apply a correction to the measured result.

It is possible to solve a problem of stabilizing the nominal value of frequency
deviation by two methods. The first method is to apply a frequency synthesizer
(see Section 3.3).

The second method is inclusion of a special channel, similar to a measuring
channel, for calibration of the frequency deviation (Figure 4.8). The signal delay is
provided by a delay line. The operating principle of the calibration channe} is as
follows. The signal delay in the delay line is known, and therefore parameters of
the signal at the output of the processing unit, applicable to a nominal value of a
frequency deviation, also are known. With a departure of these parameters from
the nominal value, an error signal is obtained, which either adjusts the amplitude
of the modulating voltage or the readings of the range finder.

The processing unit of the converted signal in the calibration channel can be
the same as or different from that in the measuring channel. All depends on the
specifications of the SRR parameters. The quality of operation of this system is
controlled by its operating principle and by the parameters of the processing unit
of the converted signal in the calibration channel.

For example, the first harmonic in the spectrum of the converted signal in the
calibration channel (Figure 4.9) can be used for calibration. The signal delay in a
delay line 1, is chosen such that the rated value of a deviation A®, corresponds to
first null of the selected harmonic of the spectrum. For example, with modulation
by an asymmetrical sawtooth it corresponds to the product Af,t, = 2, while with
sinusoidal modulation it is Af;ty = 1.22. The first harmonic of the signal is passed
to a phase detector. A voltage with the modulation frequency, produced from the
modulating voltage, is used as a reference signal for the phase detector. The phase
shifter is included for compensation of the phase shift between voltages at the in-
put to the phase detector. The voltage output of the phase detector is used in the
modulator for adjusting the modulating voltage. Upon passing through the null, the
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Figure 4.8 Calibration of frequency deviation.
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Figure 4.9 Block diagram of the calibration channel.

phase of the harmonic varies by 180°, and the sign of the output voltage of the
phase detector varies accordingly. Thus, it is a typical feedback control system.

A more complex system of using a phase-locked loop (PLL), in which the
converted signal of the calibration channel will be used, enables not only maintain-
ing a nominal value of frequency deviation, but also simultaneous compensation of
the nonlinearity of the oscillator frequency modulating function. The applicable
block diagram of the calibration channel is shown in Figure 4.10. Let us consider
the operation of this unit.

Let us assume that FM is carried out using an asymmetrical sawtooth function.
In this case the converted signal represents samples of a sine wave with duration
and recurrence interval T, (see Section 3.3). This signal is applied to a phase de-
tector, along with the reference signal with frequency Q = Aw,t/T,, where Aw, is
the nominal frequency deviation and t;, is the signal delay time in a delay line. The
delay time can be always selected so that Q = nQ2,,.

As we can see, the frequency of the reference signal is equal to that of the
converted signal in the calibration channel with nominal deviation. The output
voltage of the phase detector is added to the modulating voltage. If the frequency
deviation does not correspond to the nominal value, the amplitude of modulating
voltage is changed. Simultaneously there is distortion of the modulating voltage
compensating the nonlinearity of the modulating function.

This can be shown by a simple calculation. Let us refer the nonlinearity of the
modulating characteristic of the oscillator to a modulating voltage (i.e., consider
the modulation characteristic theoretically linear, and the modulating voltage
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Figure 4.10 Calibration channel using PLL.
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distorted). Then the modulating voltage will be written as:

U, =k —Tt—+k2w(t)~UO (t) @.11)

m

where () is the function defining nonlinearity of the modulating voltage, Uy(?) is
the output voltage of the phase detector, and ki, k, are constants of proportionality.
The phase of the converted signal is:

Awt,

o, (t,7,)= t+ Aoty (1) - kAot,U, (1) +9, (4.12)

m

and the voltage at the output of phase detector is

U, = S[(p, (t.,)- A‘;'T" t} (4.13)

m

where S is the slope of the linear part of the phase detector detection characteristic.
Substituting (4.13) in (4.12), and solving it for Uy(?), we obtain

Awt,t N kAot w(?) . @,
(1+Sk,A01,)T, 1+SkAet, 1+SkAort,

U, ()= S[
(4.14)
N Ao, Tt
(1+ Sk,Aw0T, )T,

Substituting (4.14) in (4.12), we obtain finally the expression for phase of the
converted signal at the mixer output to the calibration channel

AC;T"t +k Aoty + o, J +[

m

(4.15)

0.(,7 )=A( Sk, Ao, JAmr‘tdt
1\ d

1+SkAmt, ) T,

m

Sk,Aot, 1

where 4 =1- = .
1+ Sk, Ao, 1+Sk,Aot

As follows from (4.15), the difference between Aw, and Aw is decreased by
the factor 1 + SksA®ty, and the nonlinearity of modulation is decreased by the
same factor. As is known, the increase of product SksAwt is limited only by the
stability of operation of the automatic deviation control system. That stability is
ensured with known methods applied in PLL systems.
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44 FREQUENCY PROCESSING OF THE CONVERTED SIGNAL

The oldest and most common method of processing the converted signal exploits
the relationship between its frequency and the target range.

4.4.1 Range Finding by Counting the Number of Zero Points of the
Converted Signal for a Modulation Period

This method was the first realized method of range measurement and has been
used for many years. There are several reasons for its wide use: the simplicity and
obvious application to SRR, its ability to measure very small ranges, and the sim-
plicity of signal processing. The latter, in the “tube epoch” of radio engineering,
had decisive importance. That is why this method of signal processing has system-
atically been used, primarily in low-altitude radio altimeters. In this application
there are very strict requirements for reliability, mass, and overall dimensions.

A large body of scientific rescarch and articles is dedicated to the study of this
method of processing. The theoretical analysis of the method is founded on such
concepts as “difference frequency,” “beat frequency,” and “number of beats.” In
other words, the theory establishes the dependence of the instantaneous frequency
of the converted signal on range. Certainly the number of zero crossings of the
converted signal directly depends on its instantaneous frequency. But this method
is not in any way connected to measuring of instantaneous frequency and use of
measured results for range finding. Therefore it can best be referred to as one of
the varieties of phase processing.

The important issue is that the difference frequency is not determined, but the
number of cycles of converted signal phase, modulo n, per modulation period is
determined. Confusion was introduced in this problem, apparently, because of the
simple and visual explanation of the operation principle, as a meter for difference
frequency. Let us consider this problem in more detail, for which we will refer to
the SRR block diagram of the single-antenna SRR version with this type of pro-
cessing, shown in Figure 4.11.

As we can see, the converted signal from the mixer output passes to a limiting
amplifier. The frequency responsc of this amplifier increases with frequency, pro-
viding suppression of parasitic amplitmde modulation signals and leveling of out-
put amplitude with variation of target range. The limiting device changes the con-
verted signal into a square wave, completely eliminating dependence between its
output and input amplitudes. The square wave is then differentiated, and the result-
ing short pulses are applied to a counter that produces a voltage proportional to the
number of pulses in a modulation period. This voltage is proportional to measured
range.

One of the interesting features of this circuit for processing the converted sig-
nal is its invariance to the applied modulation waveform. It is possible to apply
any of the pertodic modulations discussed above. The result will be same, in that
only the number of impulses for a modulation period will vary: with sinusoidal
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Figure 4.11 Block diagram of single-antenna SRR with pulse counter.

modulation or modulation by an isosceles sawtooth it will be twice that obtained
with modulation by a non-isosceles sawtooth. This is easily explained if we con-
sider the phase of the converted signal.

As was shown in Chapter 2, the phase of a converted signal is defined as

¢,(t,7) = 0, T+ Aoty(t") - ¢, (4.16)

Let us determine a phase shift of a converted signal for a period between two
maxima of the modulating function, which by definition are equal to +0.5 and
-0.5.

A, (t,7) =0, 1+0.5A01 - @, —®,T+0.5A0T+ ¢, = Aot “4.17)

If the maxima of the modulating function are situated at the beginning and end of
its period, this will be the phase shift for a modulation period. This case in particu-
lar corresponds to modulation using an asymmetrical sawtooth function. With si-
nusoidal modulation or modulation by an isosceles sawtooth, this phase shift is
reached in half the period.

At the same time, as follows from (4.17), the phase shift does not depend
on the modulation waveform. It is important only that the values of phase of the
converted signal are fixed at the moments of the minimum and maximum of the
modulating function. Now it is clear why this method of processing is invariant to
the modulating waveform. Accordingly, with this method there are less rigid re-
quirements for linearity of the transmitter modulation characteristic, a clear advan-
tage for this method of processing. But, on the other hand, it is clear that rather
coarse processing of the converted signal is applied. The phase shift of converted
signal with a resolution of = is, in fact, measured. Therefore the range measuring
error is found from equating AwA<t = = to obtain

Ar = CJ4Af (4.18)
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This formula appears in many articles where difference frequency is counted, or
number of beats, and so the deduction of this formula appears to be much more
difficult.

Even in the first experiments with these radars it was noted that with range
variations of about A/4, the number of impulses varied by +1. This phenomenon is
also easily explained. For this purpose we will refer to Figure 4.12, where the plot
of the formula for the converted signal phase is shown. In cases a, b, and ¢ the
value of Awrt is identical, with 5t < Awt <6m. In case a the number of impulses is
equal to 5. If the range is increased by =A/8, the number of pulses immediately
becomes equal to 6, as in case b. With further increase in range the number of im-
pulses is again equal to 5, as in case c. This applies as long as Awt does not be-
come more than 6n. Then the number of pulses will oscillate between 6 and 7, and
5o on. Because of this there is a granularity in range measurement.

Some time ago, when a frequency deviation of 30 to S0 MHz was considered
large and the transmitted frequency was not greater than 300 to 500 MHz, this
phenomenon necessarily resulted w large inaccuracies in range measurement, es-
pecially at small ranges where the relative error reached several tens of percents.

Different methods of “averaging” for the detecting instrument were therefore
proposed. For example, it was proposed to input into the direct signal channel a
modulated phase shifter, which madulated the initial phase of the converted signal.
Due to this, the observations of the detecting instrument were averaged. Currently
the urgency of this problem has been considerably reduced. With deviations of
200 to 300 MHz the measuring error at ranges from 10m to 15m amounts to 2% to
3%. This is reasonable in the majority of applications. Also, in the cm wave band,
averaging is obtained due to movement and heterogeneity of reflective surface.

4.4.2  Measuring of the Instantaneous Frequency

In some SRR applications, range measurement to immobile (slow-moving) targets
is required (for example, in liquid-level-measuring radar, meters for ranging to
unapproachable fixed targets, and meters for small movements of various targets).
The basic requirement presented in the characteristics of such SRRs is relative
simplicity and minimum measuring error.

In this case it is convenient to apply the method of range determination by
measuring the instantaneous frequency or period of the converted signal. In the
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Figure 4.12 Typical converted signal phase versus time plots.
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final analysis the matter is again reduced to determination of the magnitude of the
converted signal phase shift Aot for a modulation period. This case differs from
the previous method of processing only in that the time interval between nulls of
the converted signal (i.e., the duration of its half-period) is measured instead of the
number of zero crossings.

As there is no necessity for determination of speed or adjusting of measure-
ment in connection with the Doppler effect, the most convenient modulation to
apply is the asymmetrical sawtooth function. Well known methods of measurement
technology are applied for measuring of time interval, and therefore here it is not
necessary to consider this problem. It is important only to note that existing meth-
ods allow us to measure time intervals with errors not more than hundredths of one
percent. Accordingly, the phase shift At is measured with the same inaccuracy.
However, this is correct only in the case when the FM is ideally linear.

With departure of modulation from linearity the duration of adjacent periods
of the converted signal is unequal. Therefore the mean value of the converted sig-
nal period is determined for range measurement. The deviation of the mean value
of the period from its true value, corresponding to the theoretical modulation, is
controlled by two factors: the nonlinearity factor of the modulating function and its
shape (see Section 3.4).

The nonlinear component of the modulating function is often nearly symmet-
rical with respect to the middle of the modulation period. We can then use (3.36)
and (3.37) for calculation. From (3.37) it is at once visible that the mean frequency

rate of the converted signal is equal to ﬁ, =Awt/T, (ie., is equal to its nominal

value). This is easily explained by the fact that for the first half of the modulation
period the instantaneous frequency is slightly less, while for the second it is greater
by exactly the same value.

We utilize the same approximation for a maximum asymmetry of modulating
function,

t W T, = Aot
y(t)=?m—+vsm2—71"—[t+7] and Q'(t,'f)r-r(l'l'\’) (419)

The applying of another approximation (for example, a parabola) gives the same
result.

Thus we find that inaccuracy of phase shift determination in this case is no
greater than the nonlinearity factor of the modulation function. A combination of a
calibration channel and PLL to control the deviation permits this method of con-
verted signal processing to measure the range with relative error not more than
tenths of one percent. Certainly, no granularity in readout of range is present.
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4.4.3 Fixing the Instantaneous Frequency of the Converted Signal

The circuit of a calibration channel with PLL control of transmitter frequency de-
viation was reviewed above. Precisely the same circuit can be utilized as well for
implementing a measurement channel. The applicable block diagram of single-
antenna SRR version is shown in Figure 4.13.

The parameter that is maintiined constant is the instantaneous frequency of
the converted signal. The modulation is an asymmetrical sawtooth function. A
phase detector is used as the discriminator. The applicable harmonics of the modu-
lating voltage are used to generate a reference signal for the phase detector. The
voltage output of the phase detector is applied to the modulator to vary the modu-
lating voltage.

The converted signal is applied to a bandpass amplifier that uses automatic
gain control (AGC). The bandpass of this amplifier should be wider by a factor of
two or three than the major spectral lobe of the converted signal (i.e., about 10F,).
The normalization of the converted signal amplitude is essential here to ensure
stability of the automatic frequency deviation control system. If necessary, the
signal can be limited after amplification. The modulating voltage appears as the
output signal of the processing unit, which is applied to a range indicator. The
amplitude of the modulating voltage is inversely proportional to target range.

Frequency locking must occuar for normal operation of the automatic control.
However, it cannot take place if the instantaneous frequency of the converted sig-
nal is not equal to a fixed frequency at radar turn-on. To ensure locking, a special
search unit is provided. When there is no signal at the phase detector output, the
frequency deviation is slowly swept by this unit from minimum value up to maxi-
mum (or vice versa). As soon as locking occurs, the unit is turned off. If for any
reason the automatic system breaks lock, the search unit is again actuated. The
search time depends on the respense rate of the automatic control system and usu-
ally exceeds a period of modulation T, by one or two orders of magnitude. As the
discriminator, it is possible to apply the usual frequency detector, in which case
there is no need for a reference signal.
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Figure 4.13 Block diagram of an FM SER with fixed instantaneous converted signal frequency.
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The stabilized value of instantaneous frequency of the converted signal de-
pends on several factors: on the ranges to be measured, the possible tuning fre-
quency range of the transmitter, the parasitic amplitude modulation signal level at
the mixer output, and the magnitude of Doppler frequency.

The latter is explained by dependence of instantaneous frequency not only
upon target range, but also upon its velocity. Therefore, the range measurement
system is subject to an error depending on speed. This is certainly a deficiency of
this processing method. For reduction of this error it is necessary to increase as
much as possible the stabilized instantaneous frequency of the converted signal.

To eliminate influence of the Doppler effect, it is possible to apply sweep-
frequency modulation by a symmetrical sawtooth function. As in this case the in-
stantaneous frequency in adjacent half-cycles differs by 2Qp (see 3.29), and the
signal at the phase detector output has the shape of a symmetrical sawtooth. For
normal operation of the automatic control system it is necessary to derive from this
voltage its average value using a simple lowpass filter. The variable component
can be used for determination of the relative velocity of the target. The inaccuracy
of range finding in this case is caused primarily by instability of the modulation
characteristic of the transmitter.

4.4.4  Use of the Frequency Deviation of the Converted Signal

Use of the frequency deviation of the converted signal is one of the most effective
methods for simultaneous measurement of range and relative velocity. This
method was designed originally as a method of eliminating a granularity in range
finding [2]. As follows from (3.3), (3.4), and (3.5), the frequency deviation of the
converted signal varies linearly and continuously with delay time of the target echo
over range delays from zero up to T = 0.17,.

It is most convenient in this case to use the SRR version with frequency shift
of the direct signal (Figure 2.2) and sinusoidal modulation of the transmission. The
application of other SRR types, reviewed in Chapter 2, with use of dual sinusoidal
modulation is sometimes possible.

The simplified SRR block diagram is shown in Figure 4.14. It differs from the
circuit in Figure 2.2 only in that the contents of the unit “system of converted sig-
nal processing” is rendered more concretely. As was already noted, the converted
signal in this case represents an FM signal with central frequency Ao + Qp and
sinusoidal modulation. Therefore the preferred circuit for FM signal processing (a
limiting device and frequency detector) is connected to the output of the IF ampli-
fier. The transition frequency of the discriminator curve is 8.

It is evident that the voltage at the output of the discriminator represents a sine
wave, the amplitude of which is proportional to range. The constant component of
the discriminator output is proportional to the offset of the converted signal center
frequency by the Doppler shift.

However, this circuit is only an illustration of the SRR operating principle
with this version of converted signal processing. To realize such a simple processing
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Figure 4.14 Simplified block diagram FM SRR with frequency detector.

circuit in practice is unrealistic for the following reasons. As was already men-
tioned, the frequency shift of the forward signal and accordingly the center fre-
quency of the converted signal, is about 100 MHz. The frequency deviation of the
converted signal can be greater than the modulation frequency by two or three
orders of magnitude. Even if the modulation frequency were rather high, for ex-
ample 1 kHz, the deviation does not exceed several hundreds of kilohertz. At a
transmitted wave length of ~8 mm and relative velocity up to 100 km/h, the Dop-
pler frequency does not exceed ~2() kHz.

At frequencies of 100 MHz or more it is very difficult to make a discriminator
with a bandwidth of some hundreds of kilohertz. The characteristic of the dis-
criminator with such large bandwidth has, accordingly, reduced slope. It is, in gen-
eral, impossible to ensure frequency stability in the discriminator characteristic
and the shift frequency to the accuracy of hundreds or even of tens of hertz, as is
necessary for precise measurement of Doppler frequency.

For this reason it is necessary to apply multiple conversions of the frequency
of the converted signal to a value that does not exceed several hundreds of kilo-
hertz. The applicable block diagram is shown in Figure 4.15. Here the FM trans-
mitter (1) is modulated sinusoidally by the modulator (2). Part of the transmitter
power (the direct signal) arrives at mixer No. 1 (3), to which an unmodulated sig-
nal with frequency do from the supplementary oscillator (4) is also applied. At the
output of mixer No. 1 there is a single-sideband filter (9), which selects the signal
with frequency w,; = 0, — d® + (Awcos,t)/2. This signal is applied to mixer No.
2 as a direct signal. The converted signal with frequency

Q,t,7) = (6w x (2p) + AQ(1)sIn€2, ¢

is input to the IF bandpass amplificr (13).

For realization of multiple down-conversion of the signal frequency, two sig-
nals, one from oscillator (4) and another from oscillator (6) with frequency o, are
applied to Mixer No. 3 (5), such that ®; < d®. As a result, the signal at the output
of filter (10) is at the frequency &i» — ®,. This signal arrives at mixer No. 4 (14).
The subsequent filter and IF amplifier select a signal with frequency



70 Fundamentals of Short-Range FM Radar

Transmitting

antenna
M Frequency Generator

transmitter e modulator ws
)] (2) ®

t
Mixer Ne1 Generator Mixer Ne3 | Generator | | yriver Nos
- dw 5 wi 7
@) ) 5) ®) 7
A
singlef-i;iedfband Fitter Filter
©) (10) (1)
\ \

Mixer Ne2 " Mixer Ne4 e Mixer Ne6
IXEM N2 amplitier s amplifier . -
(12) = ) (14) pird (16)

3
3

Receiving Narrowband Frequency - IF

antenna filter detector [« L'T'Ster amplifier
(20) (19) (18) an

Lua ‘Uv

Figure 4.15 Complete block diagram FM SRR with frequency detector.

o +Qp+ AQ,(T) sin€),, '

The further transformations of the signal are clear from the block diagram. In
this case two stages of downconversion are used as an example, but more stages
can be used. It is important that the frequency of the last supplementary oscillator
should be made low and stable enough. The transition frequency of the discrimina-
tor characteristic is equal to the frequency of the last supplementary oscillator (8).
This also achieves high stability of the converted signal center frequency and the
transition frequency of the discriminator characteristic. The constant component of
output voltage of the discriminator is proportional to relative target velocity, and
its sign indicates the direction of movement. The variable component, selected by
a narrowband filter (20), is proportional to target range.

Other circuits for deriving the direct signal frequency shift are also possible,
for example that shown in Figure 4.16. Here a supplemental FM generator is used
for deriving the direct signal with shifted frequency. This oscillator is connected to
the FM transmitter by a phase-lock circuit. The signal frequency of the reference
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Figure 4.16 Block diagram of the frequency shifter.

generator in the PLL system is equal to 8. This frequency can be made reasona-
bly small (i.e., equal to the frequency of oscillator (8) of the previous circuit). Ac-
cordingly, the frequency stability of this oscillator can also be made high enough.
Thus, the SRR receiver is simplified at the cost of some complicating of the direct
signal channel.

Here it is convenient, if necessary, to apply cancellation of the intermediate
frequency signal originating from spillover of the radiated signal into the receiving
antenna. For this purpose a signal from the reference oscillator is summed with the
parasitic signal (Figure 4.17). An attenuator and phase shifter are used to ensure
equal and antiphase summing of these signals.

4.4.5 Applying Dual Sinusoidal Modulation

It was noted in Chapter 2 that one possible method of deriving a converted signal
with nonzero intermediate frequency when using homodyne reception is to apply
dual modulation. In this case it is most convenient to apply dual sinusoidal modu-
lation. Parameters of the basic modulation (which we will call for brevity “first”)
are selected as in the previous case.

The frequency of supplementary (“second™) modulation is selected much
higher than the frequency of the first, but no more than the frequency of the sup-
plementary oscillator (8) of the previous circuits. The frequency deviation of the
second modulation is usually selected smaller (i.e., such that even at maximum
range there will be no more than one or two components in the spectrum of the
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Figure 4.17 Spillover cancellation circurt.
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Figure 4.18 Graph of a cylindrical Bessel function of the first type and order 1.

second converted signal). It is also necessary that within the limits of measured
ranges the component of the spectrum used have no nulls.

Referring to the profiles of cylindrical functions (Bessel functions) of the first
kind (Figure 4.18), it is evident that this requires that the first component corre-
spond to a Bessel function argument within a maximum range X= 1.5 to 1.7. Sup-
posing X = 1.57, we obtain a simple relationship between the second deviation and
maximal delay time

Af, =Y21,, (4.20)

If the delay time is measured in microseconds, we obtain a deviation in megahertz.

The basic difficulty in applying a dual modulation consists in separation of the
necessary part of the entire spectrum of the converted signal. Figure 4.19 shows
the spectrum of the converted signal.

We can see that, except for a low frequency portion of the spectrum depend-
ent upon the frequency of the first modulation, there are lines clustered around of
frequencies Q,, and 29,5 Let us consider in more detail the composition of these
spectrum components. Rewriting (2.29) in more compact form:

llll,.ll||l l“ln -
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Figure 4.19 Spectrum of converted signal with dual modulation.
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@, (1,71) = XQp 1+, — @, +Aw F, (1,7) + A0, F, (¢, 7)
w(t,o) 4.21)
=y(t, 1)+ A, F,(1,7)

then (2.30) can be rewritten in the form

u, =U, {cos y(t,1)cos Aw, F, (¢,7) —siny(¢, T)sin Aw, F, (t, 1:)} 4.22)
As we can see, the multiplicands cosy(#,t) and siny(#,7) are generated only by the
first modulation and the Doppler effect. Accordingly, multiplicands cosA®,F(¢,7)
and sinAw,F,(1,7) are generated only by the second modulation and can be ex-
pressed by a Fourier series.
Then, supposing T,,, >> 7 and using (3.2), (3.6), (3.7), we obtain

cosAw, F, (t,1) = J (X,) - 2J,(X )cos2Q ,(t~1/2) (4.23)
sinAw, £, (¢,1) = 2J,(X )cosQ,, (1 —1/2) (4.24)

After expansion only the first three components of spectrum are necessary, as
the amplitudes of remaining components are very small and it is possible to ne-
glect them. Finally, we obtain

U {Jo (X,)cosw(t,7)—2J,(X,)co8Q,, (t —T/2)sinwy(t,T)
ul = t

, } (4.25)
-2J,(X,)cos2Q _,(t~1/2)cosy(t,1)

The useful component of the spectrum is the second, which is located in the region
of frequency Q. It is easily selected with a bandpass filter, as the spectrum gen-
erated by the first modulation is significantly narrower than that of the second

modulation frequency. Thus, on rthe output of the bandpass filter with unity gain
we have

U,,=U2J(X;,)c0sQ,,(t—1/2)siny(t, 1)
sin[Q,,, (1 =1/2) +y(t,7)] } (4.26)

=U J (X
W (X) _sl'n[sz(t—t/Z)—\y(t,T)]

As we can see, the suppressed-carrier AM signal is present at the output of the
filter, and there is no FM on this signal. This signal consists of two signals, the
spectra of which are overlapped, and it is impossible to separate them with filters.

It is possible to apply, for suppression of one signal, the well-known phase-
compensation method of deriving an SSB signal. For this it is necessary to obtain a
second converted signal with 90° phase shift, namely the signal
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u, =U, sin[ y(t,7)+A0,F, (1,7)]

siny (1,7)cos Aw,F,, (2,7) 4.27)
+cosy (1,7)sinAw,F,, (1,7)

For this purpose there must be a second SHF mixer, to which the direct signal with
a phase shift of 90° is applied. Further, from the spectrum of the second converted
signal we obtain the applicable signal

U, =U2J(X,)cosQ,,(t—t/2)cosy(t,T)
cos[Qm2 (t—'c/2)+\|1(t,1:)] }

+00s[Q,,, (t—1/2) —y(t,7)] @29

=U:J1(Xz){

One of the signals U, is shifted in phase by 90°, then is added to the other signal
Uqy- The result is a single sideband FM signal with a central frequency ,,,. The
appropriate block diagram is shown in Figure 4.20.

As in the version with shift of the forward signal central frequency, this SRR
receiver is rather complicated. As two phase shifters for the direct signals are re-
quired, the application of the single-antenna version is precluded. Phase-shifting of
signals by 90° does not introduce significant engineering difficulties, as these sig-
nals are narrowband. At the same time, the receiver requires careful alignment.

These methods of processing the converted signal certainly have many posi-
tive qualities. These include linearity and continuity of range readout with simulta-
neous speed measurement, the absence of Doppler influence on range measurement,

Mixer __| Bandpass . Bandpass
1 Net [ fiter > Summer =% " mplifier
Y A
/
From FM Limiter
L Fixed transmitter
Receiving | ¢ | phase shifter |« ‘
antenna a0
Frequency
detector
\ J ‘
) Fixed
Mixer Bandpass | .
Ne2 1 filter phasgos;hlfter Display

Figure 4.20 Block diagram of single-sideband processor.
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and the possibility of measuring »f very small ranges (1m or less), with rather
small frequency deviation. Certainly, a large disadvantage is the necessity of using
two antennas, and of ensuring high decoupling between them. Also, the complica-
tion of the circuit may be excessive relative to its performance. Therefore these
methods have not received widespread use.

4.4.6  Single-Antenna Version with Zero Intermediate Frequency

Consider a converted signal with sinusoidal modulation applied to a lowpass filter
with linearly increasing frequency response (we will call this a “shaping filter”)
(Figure 4.21). Let us assume that the frequency of the converted signal varies
slowly and the quasi-stationary representation for passing of the FM signal through
the reshaping filter is possible (the condition of applicability of this representation
is shown below). Then an AM-FM signal will appear at the output of this filter, the
envelope of which is proportional to the instantaneous frequency of the converted
signal. It is sufficient to detect this signal with an amplitude detector, and from the
resulting voltage to select with a filter a voltage with frequency 2F,. The ampli-
tude of this voltage is proportional to the frequency deviation of the converted
signal (i.e., to target range) and does not depend on the Doppler effect. The fre-
quency deviation in adjacent half-cycles differs by 2Qp (see Figure 3.1), and the
average voltage is selected by filtering. This apparently very simple solution can-
not be realized for the following reason: clearly, the output voltage of this circuit
depends not only on range, but also on the amplitude of the converted signal. To
apply amplitude limitation to the converted signal in this case is impossible be-
cause this signal is broadband. Hence it is impossible to filter higher harmonics
originating in the limiter.

Therefore in this case it is necessary to apply an amplifier with AGC instead
of the limiting device for normalization of converted signal amplitude. The fre-
quency response of this amplifier should be constant in the entire frequency range
of the converted signal spectrum, except for the first several components. It is nec-
essary to eliminate these first components because the frequency of the envelope

U *U

QQ@‘_L.
e Tm

Figure 4.21 Conversion of frequency to veltage.
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Figure 4.22 Processing of single-antenna signal using AGC.

of the received AM signal is equal to 2F,, and is commensurable with a low fre-
quency part of the instantaneous frequency range of the converted signal. There-
fore, normal detection of targets in this band of frequencies is impossible. After
that, the normalized signal arrives on the shaping filter, and so forth (Figure 4.22).
Let us consider the condition for applicability of the quasi-stationary represen-
tation for passing the FM signal. In theoretical publications on this problem, it is
shown that this representation is applicable if the following condition is satisfied:

B >> 2JAeQ) (4.29)

where B is the filter passband, A is the frequency deviation of affecting FM sig-
nal, and Q is the modulation frequency. The most difficult condition for applica-
bility takes place when the frequency deviation of the converted signal is commen-
surable with the bandpass of the reshaping filter. Taking into consideration that in
this case Q = 2Q),, we obtain a simple relationship linking the modulation fre-
quency to the frequency deviation

Q, << 0.1AQ, (4.30)

Technically this condition is easily met. For example, with a maximum range
Q,, = 100AQ, it corresponds to the product At ~ 30 (i.e., to a deviation of 30 MHz
at a range of 150m, or 300 MHz at 15m).

The range measuring error in this version depends basically on the quality of
normalization of the converted signal and the quality of the frequency response of
the reshaping filter.

4.4.7 Fixing the Frequency Deviation of the Converted Signal

The method of fixing one of the parameters of the converted signal can be realized
by fixing the frequency deviation of this signal. The basic engineering problem
that must then be solved is the design of the applicable discriminator. As we will
show, it is rather simple to make such a discriminator. To show the possibility of
deriving discrimination performance, we will consider the character of variation of
amplitude of the first spectrum harmonic of some periodic function y(f). For this
purpose we refer to Figure 4.23.

As we can see, the function y = f(x) = 1 in segment x; < x < x, and monotoni-
cally decreases to O for x > x,. Let us assume also that function ¢(¢) is a periodic
even function monotonically descending from 1 to 0 as ¢ varies from 0 to 7/2.



Integrated Methods of Converted Signal Processing 77

t, ¥t
| ll—.‘ W

T 3Ti2

X

o

ap(l)
I
2

i

Figure 4.23 Plot for calculation of the discriminator.

Supposing x = a@(t), we form a tunction y(f) = f [ag(?)], where a is a factor de-
pendent neither on x nor on ¢,

Let us consider the dependence of function y(f) on the factor a. Note that the
function y(#), as well as @(#), is periodic and even. We see that x; < a < x;, for
y(&) = 1. With increase in a beyond x, at times t = nT (n =0, 1, 2, ...), the function
y(£) has a minimum, which decreases with increase of a. Thus the region for which
¥(¢) = maximum is displaced to times ¢t = (2n + 1)7/2.

Having clarified the reguiarity of variation of function y(f) with factor a, we
consider dependence of the first spectral harmonic of y(£) on that same factor. By
virtue of the even nature of )(¢), the first harmonic of its spectrum is found as

4 T4 2 r/2 2
=— t =t dt+ t)cos—¢ dt 4.31
.vl T{ J s TEe de | socos?] } @31

With variation in @ within limits from x; to x,, we see that y, = const. With further
increase of a, the amplitude of the first harmonic drops because of a decrease of
the first integral, and at reaching equality

T/4 T2 2
Iy(t)cos‘T-t dt = —]‘ y(t)cos7t dt (4.32)

T/4

it goes to zero. The increase in factor @ results in a further decrease of the first
integral in (4.32), because of which the amplitude of the first harmonic becomes
negative (i.e., the phase of the harmonic is reversed at 180°).
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We will obtain particular variations of the first harmonic amplitude for par-
ticular functions f(x) and ¢(7). Assuming that f{x) = 1 for x, < x < x,, and fx) = 0
for x < x, x 2 x,;, we find

s T
ty=cos—t for ——<¢<
o) - 5

NN

. (4.33)

In this case amplitude of the spectrum first harmonic is described by the following
€Xpressions:

y, =0 fora<x (4.34)
4x, x :
nw=—-.,1-1—=| forx;<a<ux, (4.35)
na a

2 2
b2 -4 ﬁ\/l—(ﬁj —x—z\/l—(ﬁj for a>x, (4.36)
n| a a a a

A plot of the variation of the first harmonic amplitude with the ratio a/x,, provided
that x; = 0.5x,, is shown in Figure 4.24. As we can see, it is the typical discrimina-
tor characteristic.

It is possible to realize particular proportions, physically, having realized
functions f(x) and a@(?). In a context of this description it is seen that the function
a(f) describes the instantaneous frequency of a converted signal with sinusoidal
modulation, and the factor a is proportional to the frequency deviation. Then the
function f(x) can be realized using a serial connection of a bandpass filter with the
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Figure 4.24 Magnitude of first harmonic as a
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applicable frequency response and an amplitude detector (we will call this filter, as
well as that in the previous paragraph, a shaping filter). To separate the first har-
monic of the output signal spectrum of an amplitude detector it is passed through a
narrowband filter with a resonant frequency 202,

Supposing that the frequency 1esponse of the shaping filter is ideally rectangu-
lar in the frequency range from 2, to €, (4.35) and (4.36) now take the form

¢ ‘o Y
y =25 -] =L | for ,£4Q,<Q, (4.37)
T AQ, AQ,

B 2
Q Q
yo= S ) S [ A0 s, 438)
| AQ, AQ, AQ, AQ,

where AQ, is the frequency deviation of the converted signal defined in (3.5). In
Figure 4.25 we show the profile of the discriminator characteristic described by
(4.37) and (4.38) for ,/Q2; = 2. The coordinates of characteristic points of this
characteristic are given by the follewing formulas:

Point of maximum positive yy::g. ) AQ, :ﬁ\/f (4.39)
response (1): T Q, Q
2

Inflection point (2): y = 4Q 1— Q , AQ, =1 (4.40)

T Q, Q, Q,

Q oY

Null point of the characteris- 3,=0, AQ, = 1+L_l] (4.41)
tic (3): Q, Q,

4| 1 1
. . , v =
Point of maximum negative ! n{ 2 \/E(QZ/Ql +QI/Q2)}
response (4): (4.42)

2
égi. = i{2+2 &
0, Q,

The simplified formulas correspond to an idealized discriminator characteristic.
The formula for the significant characteristic is connected first of all with the
problem of passing of FM oscillations through linear quadripoles. In general this
problem consists of determination of the law of signal amplitude and frequency
variations at the output of a quadripole, given an FM signal as its input. A full
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solution of this problem has not yet been obtained, and there are only separate
proprietary results.

In this case we must solve a simpler problem. Ignore here the frequency
shift of the output signal, as it will be applied to an amplitude detector. With re-
spect to amplitude variation only one part, the gap in amplitude, is of interest, be-
cause of which there is a reversal of phase of the first harmonic. But the solution
of this problem becomes complicated by the fact that the instantaneous frequency
of the input signal may necessarily exceed the limits of band pass of the quadripole
(shaping filter). Therefore the quasi-stationary method is inapplicable. This leaves
only the method of stationary phase [3]. This method does not give a precise solu-
tion, but does give a good approximation.

As the frequency deviation of the converted signal is generated at frequency
Q,, the problem is reduced to calculation of the modulation frequency at which the
zero point of the discriminator characteristic is shifted to the right of its allowable
magnitude, compared with the ideal characteristic. In other words, how rapidly can
the instantaneous frequency of the converted signal be changed?

Omitting the rather cumbersome calculations, we will produce a final result,
the formula for calculation of modulation frequency: '

Q 1
Q <Q|1-=2 02— , (4.43)
2( Q, J[ 2B, \1+(Q, /Q, ) ]

where B, > 1.2 is a coefficient describing the null shift of the real discriminator
characteristic as contrasted with the theoretical one. For example, for f; = 1.2,
Q,/0, =2, Q,, < ,/25 it corresponds to a product Aft = 25/ =~ 8. Thus, at 15m
range a deviation of 80 MHz is required.

It is also possible to evaluate precisely the influence of a trapezoidal filter fre-
quency response on the shift of the zero point of the discriminator characteristic.
As shown by calculations, the high-frequency lobe of this characteristic exercises
primary influence over the shift of the null. The applicable profile for a similar
coefficient 3, is shown in Figure 4.26.

The shift of the null of the discriminator characteristic is influenced, of
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Figure 4.26 Plot of the coefficient ;.
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Figure 4.27 SRR using fixed frequency deviation of converted signal.

course, by Doppler effect. But this influence can be reduced to an acceptable mini-
mum by increasing the modulation frequency, and, accordingly the upper
boundary frequency of the frequency response of the filter. The block diagram of
an SRR with this discriminator is shown in Figure 4.27. It in many respects is simi-
lar to the circuit that fixes the instantaneous frequency (Figure 4.13) and does not
require further special explanation. The phase shifter in the reference signal circuit
is included for cancellation of the phase shift generated in passing the signal
through the processing unit. The search unit is omitted here, as it is always possi-
ble to establish an initial value of frequency deviation such that the instantaneous
frequency of the converted signal will be in the filter passband, following which
the automatic control system will lock.

4.5 PHASE PROCESSING OF THE CONVERTED SIGNAL

Strange as it may seem, phase processing of the converted signal has not found
broad application, though the elements of the theory were obtained more than a
half-century ago. Apparently, this is explained by the fact that 30 to 40 years ago
technical factors did not allow realization of this type of processing. In particular,
it was impossible to construct a sufficiently compact arithmetic-logic unit to per-
form the calculations necessary for phase processing. There was also probably no
practical need for its realization. The key feature of phase processing is that its
application allows us to measure short ranges, from fractions of a meter up to hun-
dreds of meters, with an error no more than one-tenth of one percent. Naturally,
such precise measurement can be realized only with definite technical characteris-
tics both in the SRR and the target.

In particular, if the frequency deviation of the oscillator is varied during op-
eration even as much as one percent, a range error less than one percent cannot be
provided. Also, for example, a range of 10m can be measured with error of some
millimeters. But the reflecting surface is usually rough, with amplitude of surface
irregularities of some centimeters. Obviously, applying phase processing in this
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case makes little sense. Thus, phase processing is most useful for application in
high-precision fluid-level meters in closed tanks, and measuring displacement of
various targets and constructions.

The principle of phase processing and the resulting small measuring error are
based on the following calculations. As already shown, the phase shift of the con-
verted signal in the interval between two maxima of the modulating function,
which are equal to +0.5 and —0.5, is given by

Ag, (t,1) = 0,1+ Aw10,5-¢, — @, 1+ Aw10,5 + ¢, = Aot (4.44)

If the maxima of the modulating function are at the beginning and end of a period,
this will be the phase shift for a modulation period. This case, in particular, corre-
sponds to modulation with an asymmetrical sawtooth function. At the same time,
as follows from (4.44), the phase shift does not depend on the modulation wave-
form. It is important only that the values of the converted signal phase are fixed at
the moments of the minimum and maximum of the modulating function. From
(4.44), it follows that by measuring a phase shift Ag,(#,t) and knowing a frequency
deviation, it is easy to determine echo delay (i.e., target range).

Let us assume that Ag,(¢,7) =1,000° and that the inaccuracy of phase shift
measurement is equal to 1°. Then the relative inaccuracy of range measurement is
equal to 107. The measuring of a phase shift with such a small error does not in-
troduce any engineering difficulties in this case, as it is made with a modulation
frequency that one can set low enough (for example, 100 to 1,000 Hz).

For example, if the range is 15m and frequency deviation is 100 MHz, then
A@Lt,1) = 360° x 10 = 3,600°, and if the inaccuracy of the phase shift measure-
ment is 1°, the range error is ~4.2 mm. Let us note that with a deviation of 100
MHz, the range error from counting number of nulls or maxima of the converted
signal for a modulation period is 180 times greater, or 75 ¢cm. Thus, it is possible
to arrive at the conclusion that phase processing is very effective as well as simple.
But many factors prevent realization of such simple processing. First, the initial
phase of the converted signal at the start of the modulation period, as well as phase
values in the final parts of the period, are obscure. Obviously, without determina-
tion of these phases it is impossible to determine the phase shift AwT.

Second, measurement of the phase shift Ag,(¢,1) is complicated by the fact
that the phase varies nonlinearly in time because of nonlinearity of the modulation
characteristic of the FM oscillator and nonlinearity of the modulating voltage.
Third, to achieve measurement of fractions of one percent, it is necessary to main-
tain the magnitude of the frequency deviation with the same fidelity.

Let us consider possible ways of overcoming these difficulties in realization
of phase processing. At first we will consider how to determine the phase shift
A@,(t,t) = Awr. For determination of this phase shift it is most convenient to use
linear frequency modulation (for example, an asymmetrical sawtooth function). If
the frequency of the FM oscillator were modulated ideally under the linear law, the
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measuring of a phase shift would be unnecessary: it would be sufficient to measure
a period of the converted signal 7, then

Ag,(t,v)=2rT, /T (4.45)

Such an algorithm of calculation i5 possible when using a frequency synthesizer as
the FM oscillator, where it is possible to derive an ideally linear modulation char-
acteristic (Section 3.4).

For more usual oscillators the modulation characteristic is nonlinear, and
therefore the converted signal represents a sample of a sine wave with a variable
period. The variation of the period is no more than several percent of its average
value, but the inaccuracy of calculating the phase shift in (4.45) will also cause an
error of some percent. If such inaccuracy of measurement in the given particular
case is allowable, the problem is resolved.

If it 1s not allowable, more complex methods for determination of Ag(¢,7)
rather than those under (4.45) are required.

Let us consider these calculations, for which we will refer to Figure 4.28,
where a converted signal with variable frequency is shown.

In essence, the problem is reduced to determination of the phase shift of the
converted signal in time periods 4, ... ¢, and ¢ ... T,,. In the time interval ¢, ... 14,
the integer number of half-cycles of the converted signal is retained, and therefore
the phase shift in this time period is obtained by multiplying the number of half-
cycles by 180°.

For determination of phase shift in time intervals ¢, ... #; and #; ... T, it is
convenient to compare the duration of these intervals with adjacent half-cycles, as

it is possible to consider a phase change in two adjacent half-cycles linear enough.
Then

t, —1
Ay, =n—2 (4.46)
153 _tl
and
-1
Ap, , =22 (4.47)
t,—t
after which
o -
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Figure 4.28 Plot of converted signal with variable frequency.
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A, (V) =rk+AQ, , + Ag, 7 , (4.48)

where k is the integer number of half-cycles of the converted signal in a period of
modulation.

For estimation of utility of this algorithm we will estimate the measurement
error of a phase shift with real nonlinearity of the FM oscillator modulation char-
acteristic. It is most simple and convenient to approximate a working section of
modulation characteristic by the sum of a linear function and quadratic (parabolic)
function [Figure 4.29(a)]. The shape of the modulation characteristic using this
approximation corresponds to the most frequently encountered real modulation
characteristics.

In this case, the phase of the converted signal with linear-frequency modula-
tion also varies in time under the same law [Figure 4.29(b)] and can be expressed
as

@,(t,7) = Aota-459(a’ —a) +9, (4.49)

where 8¢ = gAart is the factor that determines the magnitude of nonlinearity of the
modulation characteristic, @ = (¢ — #)/T,,, and @ is the initial phase.

The greatest error in determination of phase shift is when for a period of
modulation an almost integer number of half-cycles of the converted signal will be
received (i.e., the phase shift in time intervals #; ... ¢; and 44 ... T, will differ from
180° by fractions of one degree). Therefore for calculation it is expedient to put
this shift equal to 180° (or «t), and @=0.

For calculation of the phase shift in the interval &, ... # it is necessary to de-
termine intervals of time #, ... #; and ¢ ... £, and then determine the phase shift
from (4.48) [Figure 4.29(c)). The difference of the computed result from 180° will
determine the error.

Equating (4.49) to n, assuming Amt = kx, and solving the resulting equation
with for (¢, — 1)/ T, we find

2n

Aw

(PoF
Un t t

Tm_—"'.‘ to t1 1.2
a) b) c)
Figure 4.29 Illustration of the phase calculation.
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(6, ~1,)/T, = z(1-1=x) (4.50)

where x = 16¢/(1 + 4¢)’k and z = (1 + 4¢)/8¢. Similarly, equating (4.49) to 2x, we
find

(t,=t)/T, =z(1-{/1-2x) 4.51)
Substituting (4.50) and (4.51) in (4.46), we obtain

Agy = m—maVIZX (4.52)

Nl—-x—-+1-2x

Carrying out similar calculus for A, , , we obtain

1—z(1—,/1—x(k—1))
(S —Ji-xtk-D)

(4.53)

Ag,. T, =

Subtracting ©t from (4.52) and (4.53) and adding the results, we obtain the er-
ror of calculating the phase shifi 5(A@,). The results of these calculations are
shown in Figure 4.30.

As we can see, even for small numbers of half-cycles (15 ... 20) the inaccu-
racy of the phase shift measurement does not exceed fractions of one percent.
Thus, the method of calculation described allows us to determine a phase shift
with an obscure initial phase and noenlinear FM oscillator modulation characteristic.
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Figure 4.30 Phase error versus number of half-cycles in modulation period.
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Figure 4.31 Range measurement using calibration channel.

Now we proceed to a problem of stabilizing the frequency deviation of the os-
cillator. As already stated, one method is use of a frequency synthesizer or calibra-
tion channel. The second method is for the frequency deviation of the oscillator to
remain unstabilized relative to its nominal value. Through a calibration channel,
the true value of the deviation is determined and the applicable correction in
calculation of target range is entered. In many cases this method can appear as
simpler and sufficiently effective.

As an example we will consider one possible realization of this method. This
was applied in combination with the previously mentioned phase processing of the
converted signal in development of a high-precision SRR for liquid level mea-
surement in a closed tank [4]. The block diagram of the radio-frequency unit that
includes the calibration channel is shown in Figure 4.31.

As we can see, the signal from the FM oscillator branches, one part of it arriv-
ing at the measuring channel circulator and one part at the calibration channel cir-
culator. The transceiving antenna is connected to the measuring channel circulator.
The delay line, short-circuited at the end, is connected to the calibration channel
circulator. The modulation is an asymmetrical sawtooth voltage.

For an explanation of the algorithm of calibrating and measuring channel in-
teraction we refer to Figure 4.32, which shows the waveforms of the radiated sig-
nal frequency change (a) and the limited converted signals of calibrating (b) and
measurement (c¢) channels.

At time #;,, when the instantaneous value of the calibration channel converted
signal passes through zero in a positive direction, the readout of phase shift for
both calibrating and measurement converted signals starts. The process of measur-
ing phase shift stops at 7, when a definite number of periods of the calibrating
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Figure 4.32 Plots of frequency of transmussion and limited converted signals.

converted signal, constant for the given instrument, (three periods in Figure 4.32)
will have passed. Obviously, the phase shift of the calibrating converted signal is

Ag, = Awt, =27n, (4.59)

where Aw is the magnitude of frequency change of the FM oscillator during the
period from #, to ¢,, t, is the delay time of the signal in the delay line, and # is the
number of periods of the calibrating converted signal.

The nonlinearity of the FM oscillator modulation characteristic does not influ-
ence the magnitude of the phase shift Ag,, as during measurement an integral
number of periods of the calibrating converted signal has passed. The phase shift
of the measuring converted signal is

_t —
A9, (t) = Aot = n[k +hh +£e~ﬁj (4.55)
L=t t,—t,

4

where k is an integral number of half-cycles in the period ¢,...z,. Substituting A®
from (4.54) in (4.55) and solving for 7, we obtain

T="1, =CAg,(1), (4.56)

where C = 1,/2nn = const, a coefficient defined only by parameters of the delay
line and the number of periods », which are known for the given instrument.
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Instability of the center frequency and slope of the modulation characteristic
of the FM oscillator do not influence the error in measurement of delay time of the
target echo. Let us estimate the effect of target motion on measurement error. For
this purpose assume that as a result of motion the phase shift is shifted to magni-
tude 8¢ for a modulation period. Then 8¢ = Awdt, where 37 is the variation of
time delay for a modulation period. From the last formula it is easy to obtain the
expression for the allowable speed of the target

_ 8@CF,
720Af

(4.57)

where 8w is determined in degrees, and C is the velocity of light.

For example, if 8o = 0.1° and F,, = 1 kHz, V' = 0.4 m/s. For targets requiring
such precise measurement (for example, in liquid-level measurement in wrap-
around tanks), such speed is not experienced. For example, variation of gasoline
level with such speed in the reservoir of a filling station with the surface space
3m x 6m corresponds to speed of fill in (or draining) 7.2 m®/s, which is completely
unrealistic.
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Chapter 5

Spectral Methods of Processing
the Converted Signal

51 GENERAL DESCRIPTION

As indicated by its name, this processing method uses the parameters of the con-
verted signal spectrum to obtain information on target range and radial velocity.
These target parameters are measured by:

e Dependence of the amplitudes of spectral components on target range;
e Doppler frequency shift of spectral components;
e Phase of spectral components.

Spectral processing is most =asily applied in SRRs using the block diagrams
Figures 2.3 or 2.4 (see Chapter 2). In these circuits, the spectrum of the converted
signal is in the range of frequencies that are multiples of the modulation frequency
(i.e., rather low frequencies), substantially simplifying realization of the processing
circuits. We will therefore examune the methods of spectral processing only with
reference to such circuits.

The major advantage of spectral processing is the opportunity for the SRR to
resolve several targets. As was shown in Section 4.1, the converted signal in this
case represents the sum of the converted signals from each target. From spectral
analysis theory it follows that the spectrum of the sum of the signals is equal to the
sum of the spectra of each of them. Thus, using distinctions between signal spec-
tra, it is possible to identify them separately.

Let us consider briefly the opportunities for use of the listed parameters of the
converted signal spectrum. As follows from the analysis of Chapter 2, the depend-
ence on target range of spectral component amplitudes of the converted signal is
defined by the transmitted signal modulation waveform and the reflected signal
level. This dependence is shown most distinctly in the case of asymmetrical
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Figure 5.1 Variation of the 4&th component amplitude with range.

sawtooth modulation. In the following, unless noted otherwise, we examine the
spectrum for this type of modulation.

To derive this dependence we express t as a function of R in (3.20), obtaining
the range dependence of the amplitude of the kth component. A diagram of this
dependence is shown in Figure 5.1, for the larger component of the kth pair in the
spectrum, whose amplitude given by

. 2R
_ smn(AfF—k)
© om(Aft-k) l n(AfZE_k)
o

sinm(Aft—k) 5.1)

The range corresponding to the maximum amplitude of the kth component is
determined by & and by the frequency deviation of the transmitted signal. At the
same time, the range resolution AR, corresponding to the base width of the main
response lobe, is determined only by the frequency deviation. Figure 5.2 shows a
three-dimensional plot of the dependence on target range of the spectral compo-
nent amplitudes. As we can see each spectral component reaches a maximum only
for a particular value of range. We can measure range with a certain error using
the number (or in practice the frequency) of the largest spectral component.

To obtain a spectral plot of echoes from a single target we take a section of
Figure 5.2 in a plane perpendicular to the abscissa at a point corresponding to the
target range. For example, in Figure 5.2, R = 3.3C/2Af

If there are two or more targets located at different ranges and within the an-
tenna beam, we make two or more projections (Figure 5.3). As we can see, it is
possible to resolve these objects and to measure the range of each. Note also that it
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Figure 5.2 Spectral component amplitude dependence on target range.

is possible to use combinations of spectral components on the basis of dependence
of their amplitudes on target range in realizing processing algorithms.

Consider now the phases of spectral components of the converted signal. In
this case, as follows from the analysis in Chapter 2, the phases of spectral compo-
nents do not depend on the frequency modulation waveform. For any modulation
the phase of the kth component with frequency kQ2,, + Qp is

(K, +02) 1+, =, ~kQ, ~+1(D) (52)
and for components with frequency n€,, — Qp,
(nQ, —Qp 1t —@, +@, —nQ,, %+ (1) (5.3)

Thus the information on target range and radial velocity is present in the phase of
any spectral component. The phase angles ¢, = .ty and kQ,,7/2 contain the range
information, while angles n(1) and v(t) are equal or to zero or /2 for the usual
modulation waveforms. It is also useful to note that the kth component pair with
frequencies k), + Qp and 4€),, -~ Qp has phase angles ¢, and @y with different
signs. As will be shown below, this permits cancellation of these angles. For range
measurement it is also possible to use the phase angle £Q,,t/2, but for this a par-
ticular relationship of the modulation period to the reflected signal delay time is
necessary.

On the basis of this brief review, we conclude that the use of the converted
signal spectrum provides ample opportunities for design of various signal processing
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algorithms and circuits. To work with a spectrum we must have it physically, but a
mixer output contains the converted signal rather than its spectrum. Hence, we
must process the converted signal in such a way as to extract its spectral parame-
ters. Let us review this question in more detail.

In Chapters 2 and 3 the analysis of the converted signal spectrum was carried
out to obtain its essential characteristics. In this case the spectral analysis of a
Junction (the converted signal), given by its analytical expression, was carried out.
Accordingly the spectrum was calculated analytically. In this chapter there is an
analysis of a spectrum of a physical process (the converted signal) as it appears
(i.e., in real time). Clearly this analysis must be only physical, and a corresponding
circuit block, which we name the analyzer, is necessary for processing the con-
verted signal.

Thus, spectral processing the converted signal depends on an analyzer whose
output is a signal representing the converted signal spectrum in an appropriate
form. This signal passes to the input of the spectral processing block, which as a
rule exchanges information with the modulator and the output display. The pro-
cessing block is in essence a special computer that processes the input information
and produces the appropriate signal on the display. The program on which this
computer works is defined by many SRR technical parameters.

Hence, the end result of spectral processing of the converted signal depends
not only on its spectral parameters but also on properties of the analyzer and the
processing block. An important feature of spectral processing is its ability to
measure radial velocity of the target, including the sign of this velocity as well as
its magnitude, simultaneously with range measurement. This ability depends on the
Doppler shift of spectral components relative to frequencies that are multiples of
the modulation frequency (see Chapter 3). Technically, measurement of speed is
reduced to measurement of Doppler frequency. Methods of measurement of signal

Figure 5.3 Spectrum component amplitude dependence on target range (two or more targets).
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frequency and selection of its sign are well known, and therefore are not discussed
in this chapter.

5.2 RANGE RESOLUTION

It is worth considering the question of SRR resolution, assuming that asymmetrical
sawtooth modulation is used. Let us consider first an idealized picture of target
arrangement.

We assume that there are two point targets in the main lobe of the SRR an-
tenna pattern. The reflected signals from these targets are identical. The signal
delays of the targets are 7, and 1, and the quantities Aft, = k and Aft; = n are
equal, where k and # are integers. In this case the spectra of the target signals con-
sist of unique components with frequencies k€, and nQ, respectively, and the
spectrum analyzer can identify these components as belonging to two targets. The
minimal radial distance between the targets that can be resolved corresponds to &k +
1 = n [i.e., components appear as in Figure 5.4(a)]. Then from (3.20) it follows
that AfAt = 1 and the minimal resnlvable radial distance between the two targets is

AR == (5.4)

Clearly this arrangement of targets is improbable. However, (5.4) defines the
maximum possible range resolution of an FM SRR that serves as a reference for
the actual range resolution.

Now let us assume that the targets are located such that AfAt; = k= 0.5 and
AfAty = n £ 0.5 are equal, the most adverse condition for target resolution. In this
case, two components located in the main lobe of the spectrum are produced by
each object and the sidelobe components are maximal [Figure 5.4(b)]. If the
maximal spectra components are adjacent, then AfAt = 2, and accordingly

AR=2AR,, = —A% (5.5)

Certainly, for more reliable resolution between the maximal components there
should be at least a minimal separation of one spectral component [Figure 5.4(c)],
in which case

AR =3AR,. :1.55{- (5.6)

The value of AR given by (5.5) or (5.6) is actually the theoretical optimal
range resolution. Formally, we may draw the conclusion from (5.6) that AR is
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Figure 5.4 Illustration of range resolution for a fixed target.

limited only by the frequency deviation, but this is not absolutely true. This con-
clusion is applicable to SRRs operating at rather small ranges (e.g., several tens of
meters) where very high resolution is required. For example, for AR = 1.5m a de-
viation near 300 MHz is required. At greater ranges (e.g., hundreds of meters or a
few kilometers) resolution is limited also by the number of detectable spectral
components. For given values of frequency deviation and target range the number
of the largest spectral component is

n= Af%. (5.7)

Determining from (5.6) a frequency deviation and substituting it into (5.7), we
obtain

3R
n=-—,

" (5.8)

From (5.8) it follows, for example, that with R = 1500m and AR = 15m, then
n =300 and the required value of deviation is not too large: 30 MHz. Processing
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of such numbers of components demands very high linearity in the modulation
characteristic of the FM transmitter, as well as in the modulating signal (see Sec-
tion 3.5). Therefore, it is more usual to have

«A;i~o.05...0.1 (5.9)

The analysis of spectra and range: resolution becomes significantly more compli-
cated if the reflected target signals are unequal and the targets are moving, corre-
sponding to most real situations. The sidelobes of one spectrum may then be larger
than the main lobe of the other [Figure 5.5(a)]. Thus resolution of two targets is
possible only when the main spectral lobe of the smaller signal exceeds by a cer-
tain ratio the sidelobes of the larger signal. The distance between objects at which
this condition is satisfied is the resolution appropriate to these conditions [Fig-
ure 5.5(b)].
Consider an example (Figure 5.6) in which the first target signal exceeds by
10 dB that of the second. We will assume that for reliable resolution of the second
target we need a 5-dB ratio of components in the main lobe of its spectrum to
those in the sidelobes of the first target. Let us calculate an allowable level of
sidelobes in the spectrum of the first signal. This level should be no more than the
sum of
-10dB (the difference between the first and second signals)
—4 dB (the worst-case reduction of components in the main lobe
envelope of the second signal spectrum)
-5dB (the ratio of components in the main lobe envelope of the
~ second signal above components in sidelobes of the first)

=-19dB (allowable sidelobe level).

fdB]

-ior

20

Figure 5.5 Illustration of range resoluticn for unequal reflected target signals.
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Figure 5.6 Range resolution for targets of different amplitudes.

In Figure 5.6 it is easily established that the main lobe of the second signal
spectrum may be near the third and fourth sidelobes of the first signal spectrum.
Thus

AR=4AR =2Zcf (5.10)

In Figure 5.7 results of similar calculations (dashed curves) are shown. The ab-
scissa is the ratio of the two signals P,/P, and the ordinate is the ratio of actual

)
1°_ARIAR,,‘",
or , II
BT /
7 / 5dB
7k / //—
°r /
5 /
A4 y 20dB
3
R Y
1 1 1 i ' L o
0 10 20 30 [dB]

Figure 5.7 Ratio of range resolution to optimum value with weighting (solid line) and without
(dashed line).
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range resolution to maximum range resolution. The parameter of the curves is the
ratio of components in the main lebe envelope of the smaller signal to those in the
sidelobe envelope of the larger signal.

As we can see, the SRR resolution decreases sharply with increase in the ratio
of one signal to the other. The main reason for reduction of resolution is the slow
reduction of sidelobes of the converted signal spectrum.

As noted in Chapter 3, the sidelobes result from phase discontinuities at the
ends of the modulation period. Therefore, it is logical to propose that for sidelobe
reduction the converted signal should be amplitude modulated so that its amplitude
drops to zero at the ends of the period. This reduction in amplitude should occur
smoothly, without a break of the envelope near the end of the period (i.e., the de-
rivative of the envelope at the ends of the period should go to zero). This method
has been known for a long time and is usually termed weighting [1].

We can show that the most suitable modulation function (weighting function)
for the converted signal envelope 15 cos’(n/T},). Since

cosz[-n»]=l{l+cos{ﬂﬂ (5.11)
T,) 2 T,

it follows that the optimum converted signal is amplitude modulated with a cosine
envelope. According to (2.24) and (5.11), this signal is

u, =U, %{1 <|~cos[2?1E :lcosl:iQDt +AWF,(1,1)+¢, —(po] (5.12)
Then, according to (2.27), each component of the converted signal spectrum is
also an AM waveform, and the stdebands of each are summed with the adjacent
components. The amplitude of the kth component is

U, - y_{{sin[n(Aft—k)] . sin[n(AfT—k+1)] . sin[n(Af‘c—k—l)]} (5.13)
2 n(Aft-k) 2n(Aft—-k+1) 2n(Aft—k-1)

It is easy to explain the effect of sidelobe suppression if we consider a spectrum,
taking into account the “sign” of the amplitudes of its components.

In Figure 5.8(a) the components of the spectrum are shown for Aft = k + 0.5
without multiplication by a weighting function. Upon multiplication of each com-
ponent by the weighting function, two sidebands appear that are in an antiphase
with the next components (except for two components in the main lobe numbered
3 and 4). So, in (b) the right sideband of 1 is in an antiphase with 2. In (c), the
sidebands of 2, in turn, are in an antiphase with 1 and 3, while in (d), the sidebands
of 3 are in an antiphase with those of 2 and in-phase with those of 4, and so forth.
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Figure 5.8 Explanation of weighting processing.

As a result of the addition of all spectral components in (f) components 3 and 4 are
increased and all others considerably decreased.

Figure 5.9 shows the spectral envelopes with and without weighting. The left
side of the envelope is not shown, as the envelope is symmetrical about the center
of the main lobe. The two first rows of numbers above the sidelobes show the ratio
of sidelobe to main lobe in decibels, the top line without weighting and the center
row with weighting. The bottom row shows by how many decibels the appropriate
lobe has been decreased by weighting. We can see that multiplication by the
weighting function broadens the main lobe while significantly decreasing the
sidelobes. It is especially important that the nearest sidelobes have decreased by
14-25 dB.

Results of range resolution calculations with weighting are shown in Fig-
ure 5.7 (solid line). We can see that with increasing ratio of one signal to the other
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Figure 5.9 The fragments of a spectral :nvelope.

the range resolution changes only slightly, and is approximately two to three times
worse than the maximum. Thus, the application of weighting of the converted sig-
nal is quite effective.

Technically it is simple to weight the converted signal. The weighting func-
tion is formed from the first harmonic of the modulating signal spectrum. Modem
technology also permits very simple muitiplication of the converted signal by the
weighting function.

53 RADAR SCAN OF RANGE

As in pulse radar, it is possible in SRR to use displays such as A, B, or J type, on
which target range is presented. In SRR, the range data displayed on the indicator
is derived from analysis of the converted signal spectrum. We note that here the
term analysis is understood in a completely different sense from that used in Chap-
ters 2 and 3. In this case analysis of the spectrum is defined by the operating algo-
rithm of the processing block, and the result of this analysis is a range estimate
presented in an appropriate way on the indicator. Thus, for realization of range
estimation it 1s necessary first of all to obtain at the output of the analyzer a signal
representing the converted signal spectrum.

There are two methods of generating such signals: simultaneous analysis and
sequential analysis. In the first the analyzer is implemented as a bank of bandpass
filters with resonant frequencies 7(,, and passbands 2Qp... (Figure 5.10). The
converted signal is applied to all filters simultaneously, and the signal correspond-
ing to the nth component of the converted signal spectrum appears at the output of
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Figure 5.10 The simultaneous analyzer.

filter n. Signals from the filter outputs are applied simultaneously and continuously
to the input of the processing block.

In the second method a single bandpass filter with variable resonant frequency
is used. The resonant frequency of this filter is scanned to cover sequentially the
frequencies of spectral components. As the resonant frequency of the filter scans
past each of the n components, a signal corresponding to this component appears
at the filter output. This method is termed sequential analysis.

Simultaneous analysis certainly has advantages over sequential: the informa-
tion on amplitude of every spectral component is present at all times at the ana-
lyzer output and may be extracted at any moment. It is also very important that it is
possible with simultaneous analysis to neglect transients from moving targets, be-
cause the time for a change in amplitude of the moving target component is much
greater than the transient time of the filters. This is easily shown in an example.

The buildup time of a signal at the output of a bandpass filter after input of a
sinusoidal signal at the filter’s resonant frequency is £, ~ 0.8/B, where B is the
passband of the filter. In this case

, 08 _08C
" 2F, AfV

(5.149)

The time over which the amplitude of a spectral component may change from zero
to its maximum (see Figure 5.1) is

Ar =

AR C
- 5.15
v (5-15)

=W

Since f, >> Af then £, << At,

Simultaneous analysis has a major disadvantage in that the analyzer circuit is
very bulky. This results from the need for large numbers of filters, as can be shown
by an elementary calculation. Assuming that the ratio of the maximal to minimal
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range is g, and the number of the spectral component appropriate to the minimal
range is n, then the number of filters is gn — n = n(g — 1). For example, if g = 10,
and n = 5 there must be 45 filters. Reduction of » is not always possible for two
reasons: (a) because of the need to filter out of the signal any parasitic amplitude
modulation, and (b) because of the: required range resolution (when the frequency
deviation is large the range resolution is better, and large frequency deviation re-
quires large n). ;

It is possible to reduce the number of filters by dividing the range coverage
into two or more subbands. It is the most convenient if these subbands have identi-
cal ratios g’ = ‘J; , where £ is the number of subbands. Accordingly, the frequency
deviation of the transmitted signal should decrease by the factor ¢’ at each transi-
tion to the next sub-band. Only then will it be possible to use the same complete
bank of analyzer filters in all subbands. Because of deviation reduction, the extent
of each successive subband is increased by ¢’ and the range resolution is worsened
by g’, but the ratio of resolution size to subband size remains constant.

Let us proceed to consider the operation of an analyzer performing sequential
analysis. Despite its apparent simplicity, realization of this analyzer involves some
technical difficulties. First, we note that if frequency agility is used a certain time
is necessary to observe each set of spectral components. The speed of frequency
agility cannot be more than a certain value, as otherwise the amplitude-frequency
characteristic of the filter will be distorted, with resulting distortion of the analysis.
Thus, while for simultaneous analysis we use “by default” the static amplitude-
frequency characteristics of the analyzer filters, for sequential analysis we must
consider the dynamic amplitude-frequency characteristic of the agile filter. The
resulting difficulties are connected with the realization of filter agility over a wide
range of frequencies and especially with maintaining invariance of its amplitude-
frequency characteristic. Therefore, it is best to apply analyzer designs that do not
require filter agility. There are two possible methods.

The first method is to transfer the converted signal spectrum to another fre-
quency range and periodically scan the narrowband filter. This analyzer circuit is
equivalent to the conventional superheterodyne receiver (Figure 5.11). The het-
erodyne (local oscillator) sweep is a sawtooth function and its frequency deviation
equals the instrumented extent of the converted signal spectrum. The receiver is
thus periodically tuned to all frequencies in this portion of the converted signal
spectrum, while the narrowband filter is tuned to the intermediate frequency and

From Acceptance Narrowband
MICTOWAVE cmmrami~ fitter Mixer - filter
mixer nQm...qN0m l Tc; the sy:tl;rjn
of convel
signal spectrum
processing
Haterodyne- Modulator

Figure 5.11 The sequential analyzer.
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Figure 5.12 Frequency relationships in the sequential analyzer.

does not need agility. The acceptance filter of the receiver is a fixed, broadband
LPF filter. To obtain good image-channel rejection while passing the desired sig-
nal, the intermediate frequency is chosen higher than the highest frequency of the
instrumented extent of the converted signal spectrum. The relationships among this
spectrum, the range of heterodyne frequencies, and the intermediate frequency are
shown in Figure 5.12.

Thus, the filter does not scan across the frequencies of the converted signal
spectrum, but rather the spectrum is scanned across the fixed filter bandpass.

The moving spectrum entering the filter generates a transient resulting from
the influence on the filter of the linearly varying frequency. Thus, the amplitude-
frequency characteristic of the filter is distorted: there is a shift of its maximum
and a broadening of its passband. The more rapid the signal frequency variation
the more strongly distorted is the amplitude-frequency characteristic. In Fig-
ure 5.13 the amplitude-frequency characteristics of the filter are shown for (a)
static and (b) dynamic conditions, as a function of the normalized detuning

-,

Y

(5.16)

Where @y is the resonant frequency of the filter and AQ is half its 3-dB bandwidth.
There are many theoretical works devoted to analysis of varying-frequency
signals in selective circuits. In this case, it is best to estimate the allowable rate of

:
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Figure 5.13 Amplitude-frequency characteristics under (a) static and (b) dynamic conditions.
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change of the heterodyne frequency using works where simple formulas for engi-
neering calculation of amplitude-frequency characteristic distortions are given.
Such formulas are found, for example, in [2], which we will use to estimate the

allowable rate of heterodyne frequency change of the analyzer. Let the heterodyne
frequency vary linearly:

» =0, +ot 5.17)
where a is the rate of frequency change. It is obvious that the spectrum moves with

the same rate relative to the fixed filter. For further calculations a parameter pro-
portional to the speed of heterodyne frequency change is defined as

n=0/(AQ)’ (5.18)

where AQ is half the passband of the narrowband filter. In our case AQ = Qppay.
Parameters of the dynamic characteristic of the filter are determined by p.

In particular in [2] it is shown that a flat amplitude-frequency characteristic
(e.g., the characteristic of a double-tuned filter) is distorted to the greatest degree.
Broadening of the passband (in terms of normalized detuning) is

AL = &, =254 (5.19)

The average displacement of the characteristic is

E’—‘;—E& =2.1pt = 0.42,/AE (5.20)
from which we obtain
0 =02Q  \JAE (5.21)

Given the allowable rate of change of analyzer heterodyne frequency, it is
possible to determine the minimal analysis time for the entire converted signal
spectrum or the minimal period of modulation of the heterodyne frequency

T (q_n)Qm :S(q-n)Qm

T Q). JAE

where ¢ and » are numbers of the highest and lowest spectral components, respec-
tively.

To estimate 7, consider the following example. Let Fpgx = 10 kHz (the
Doppler frequency observed in J- or K-band with a radial velocity ~ 100-150
km/h). The ratio Q,/Q,, .. does not usually exceed 10. Assume (¢ — n) = 20, and

mh

(5.22)
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&€= 0.01 (a value so small that the dynamic characteristic does not differ signifi-
cantly from the static). Shift of the characteristic is also negligibly small:
£ = 0.042. Substituting this data in (5.22), we find 7,,;, = 0.16s. Varying the initial
data shows that the time to scan this range interval does not exceed fractions of a
second.

Let us proceed to consideration of the second method of realizing a single-
filter analyzer. This method is based on the fact that the amplitude of any spectral
component depends on the product Aft. Hence, dependence of amplitude of the
nth component on delay time, for constant deviation, or on size of the deviation,
for constant delay, are identical. Actually, if the filter is tuned to frequency »nQ,,
and the delay of the reflected signal is T, there is some value of deviation at which
the product Aft = n applies and the output signal is maximal. Hence, for periodic
display of the entire range interval we must change the value of frequency devia-
tion periodically, smoothly and within the certain limits.

The block diagram of such an analyzer is given in Figure 5.14. The narrow-
band filter is tuned to frequency n<2,, and has a passband 2Q2,, ... The number of
the selected spectral component depends on the size of parasitic amplitude modu-
lation signals and the required SRR resolution. In most cases the value of » does
not exceed 10 to 20.

A block is included between the modulator and the FM generator to apply
sawtooth amplitude modulation. This block is controlled by a signal periodic at
T..ar generated in the control signal generator, from which signals also go to the
processing block and the display. To obtain a linear scale of range on the display,
we must change the frequency deviation according to a certain law, for which we
refer to Figure 5.15.

Figure 5.15(a) shows the display sweep signal. For a linear range scale the
dependence of the indicated range on sweep time [Figure 5.15(b)] should be also
linear:

From Narrowband To the system

mixer filter nQm | of converted

signal spectrum
processing

Control signal To display
generator
To Amplitude From
transmitter modulator modulator

Figure 5.14 The sequential analyzer.
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Figure 5.15 Derivation of the look time: | a) display sweep signal, (b) range sweep, (c) change in
transmitted frequency deviation, and (d) time for change from one spectral component to the next.

ba— At

R= Ry (R = Ry ) 2 07 =1, 487 (5.23)

mAf mhf

where 6t = 2(R,., — R,;,)/C. Using the ratio Aft = n, we obtain

nT
Af(ty=——28 (5.24)
TinLmay + 0T

Hence, for the period of range estimation the frequency deviation of the radiated
signal [Figure 5.15(c)] should vary on a hyperbola from n/t,, to 7/Tg,,.

To determine the minimal duration of the sweep period T, note first that
only the amplitude of the appropriate spectral component varies with a change of
deviation. Therefore the transient process is characterized by the transient time of
the filter output signal as it responds to change of the input signal. Transient time
was given by (5.14), and this time needs to be compared to the time for change
from zero to maximum value of the nth spectral component. We designate this
time as Ar [Figure 5.15(d)]. This spectral component changes from zero to its
maximum with a change of frequency deviation from n/t to (n — 1)/t (i.e., by an
amount /7). The time in which the deviation will change by this amount is deter-
mined by the rate of change of the frequency deviation. In Figure 5.16(c) we see
that the greatest deviation rate corresponds to its value at + = 0. Differentiating
(5.24) with respect to ¢ and setting ¢ = 0, we obtain

g’é}_" _ ndt

dt © T

min~ mAf

(5.25)
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Then, from Figure 5.15(d), we have

A=t —2 (5.26)

max Tmin)

Assuming that Az = 10t, = 4/Fp, we have

r, =" [3@*——1] (5.27)

o T
FD Tmin

The sweep period T,y for n = 20, Tpe/Tmin = 10, and Fp = 10 kHz is found to be
T,as = 72 ms. Thus, even with such hard constraints, when the transient time in the
filter is an order less than the time of selected spectral component change, the
sweep time does not exceed several tens of milliseconds.

In this case, however, we must estimate the period 7,,,, on a completely dif-
ferent basis. With a change of deviation there is a change in the converted signal
spectrum (i.e., we must deal with the current spectrum, although strictly speaking
the spectra of physical processes are always current because the spectra obtained
mathematically are true only as £ — o). A spectral change in a physical process
requires a certain time to observe. For the case considered this means that the rate
of change of frequency deviation must be limited, or else the spectrum of the con-
verted signal will differ considerably from that calculated in Chapter 3.

Strict calculation of the current spectrum of the converted signal with change
in frequency deviation is very complex. However, an approximate calculation of
the necessary sweep period T, is simple to perform, assuming that in time At
[Figure 5.15(d)] the nth component of the spectrum can be successfully generated.
Thus, the problem is reduced to calculation of the current spectrum of a sinusoid
in the time At and, further, to calculation of 7, depending on the necessary de-
gree of formation of the converted signal spectrum. To perform this approximate
calculation we will consider again the current spectrum of a sinusoid.

By definition of the current spectrum, if f{f) = sinQ, then the current spectrum
is determined as

¢ Q ; o)
— —fot oo __ " o LW
s, —_!e sin Q)¢ dt-Qz‘mz 1-e coth+stmQt (5.28)
This equation can be significantly simplified by considering values of spectral
density for discrete moments of time

T T
t=t, =k—=k— . 5.29
p=ko=ks (5.29)
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Having substituted (5.29) in (5.28). we obtain

=g — ] {1—(—1)‘ e’*’ﬂ (530)

and the current spectrum is

S 1[5 B
1‘[5)

In (5.31) the sine function correspends to even &, and the cosine function to odd k.
The uncertainty of (5.31) at ® = ) can be easily resolved:

(5.32)

&N
SR

I 0=

Thus, the spectral density at frequency o = ( increases linearly with time.

From (5.31) it follows first that the spectrum is homogeneous, as is the spec-
trum of any short-term process. Further, the spectral lobing shown in Figure 5.16
is gradually formed. The envelope’s main lobe is eventually increased and be-
comes more and more narrow, and only in a limit as # —»00 does the lobe turn into a
discrete line.

In our case the degree of spectrum formation is easiest to estimate based on
the width of the spectral envelope's main lobe. Let us determine this width as a
function of the factor k. The values 0/Q corresponding to sin{(kn/2)(w/Q)] = 0 are
determined from

V% Tl

_ w0
k6 k4 k2 T k2 k4 k6
K K k k k k

Figure 5.16 Current spectrum of a sinusoid.
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i E(ﬁ _1) —gn (5.33)

where ¢ =0, £1, 12,43, ...
The value g = 0 corresponds to the maximum of the spectrum main lobe and
the values g = *1 to the first nulls, for which we obtain

o

Q

k+2
nE 5.34
i (5:34)

0

Thus, for the current spectral envelope of a sinusoid, the null-to-null width of the
main lobe is

An, _4 (5.35)

As we can see (5.35) relates the width of the spectral main lobe to time through
(5.29). Defining k from (5.35) and substituting it in (5.29), we obtain

;o Am (5.36)
Ao,

As the criterion for formation of the spectrum we use the ratio of mainlobe
width to half the passband of the analyzer filter (i.e., we assume that Ae < yQp,
and y << 1). Then, equating (5.26) and (5.36), we obtain

2n (rm—“ - 1]

Ty >——mn 2 (5.37)
mAf ¥ FD

As we can see, the values of 7, determined by (5.27) and (5.37) have the same
order. Usually values of 7,,,, are between several tenths and units of seconds. The
limit to increase in the analysis time depends also on the requirement that there be
no serious distortion of the spectrum caused by target motion during the analysis,
as may occur for high target speeds at small ranges.

One more method of realization of sequential analysis of the converted signal
spectrum is possible. In this method the modulation frequency is changed while
the frequency deviation remains constant. With change in the modulation fre-
quency, the spectrum of the converted signal is stretched or compressed on the
frequency axis. There will always be a modulation frequency such that the fre-
quency of the nth spectrum component will coincide with the frequency of the
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analyzer filter. This method has no advantages in comparison with those consid-
ered above, and hence details of this method are not considered here.

In conclusion, we consider the problem of normalization of the converted sig-
nal for use in the spectral processing methods discussed above. In Chapter 4 (see
Section 4.2.2), a method of signal normalization with simultaneous suppression of
parasitic amplitude modulation signals was described, using an amplifier with a
nonuniform amplitude-frequency characteristic. Such an amplifier may also be
included between the mixer and the analyzer in the simultaneous or sequential
analyzer. For improved normalization we may also include an AGC circuit in this
amplifier, which will be followed by the weighting block. Inclusion of such an
amplifier in the analyzer using change of frequency deviation is obviously not
meaningful. Actually, for Aft = n, the basic part of the spectrum concentrates
around the nth component, where n is fairly high (in most cases between 10 and
20). This provides adequate selectivity with respect to parasitic amplitude modula-
tion signals.

5.4 SPECTRAL PROCESSING USING THE PARASITIC AM SIGNAL

In some cases (e.g., for SRRs used in security systems) we must detect targets at
short range. In this case the spectrum of the converted signal overlaps that of the
parasitic amplitude modulation signal (see Section 4.2). To extract the useful sig-
nal against the background of parasitic amplitude modulation we may certainly
apply a rejection filter (as in Section 4.2), but another method is possible that may
be preferable. For consideration of this method we address Figure 5.17. Here the
components of the converted signal spectrum together with the spectrum of a para-
sitic signal are shown for (a) sinusoidal modulation and (b) asymmetrical saw-
tooth modulation. The spectral components of the parasitic signal are shown by
dashed lines. As we can see, the three spectral components (the parasitic signal
and spectral components of the converted signal located near it) are formally simi-
lar to the spectra of (a) an AM signal or (b) an AM-PM signal.

Thus, it is possible to extrack the spectral components with a bandpass filter
and detect them with an amplitude detector. Such detection produces a Doppler
signal whose amplitude varies with range, according to the law of change of ampli-

b)

| I
| |
| I
I |
| ]
Q Q

Q,
nQm-Qp m Qn+Qp nQm-Qp ‘ m Qm+p

Figure 5.17 Spectral components of converted and parasitic signals.
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BN

Figure 5.18 Phasor diagrams: (a) AM signal, (b) detected signal for sinusoidal modulation, and
(c) detected signal for asymmetrical sawtooth modulation.

a)

tude of the nth spectral component of the converted signal. This signal may be
further processed in the same way as the nth component of a signal with frequency
an * QD-

The nth component signal at the bandpass filter output is, however, only for-
mally an AM signal, as the phase relationships peculiar to an AM signal are not
present. In an AM signal the sidebands are always located symmetrically about the
carrier frequency, as in Figure 5.18(a). In our case the arrangement of “sidebands”
with respect to the “carrier” is arbitrary, being defined by the phase of the carrier
and angles @, and ¢, of sidebands. In particular, the vector diagram of this signal
may appear as shown in Figure 5.18(b), corresponding to a PM signal with very
small AM rather than to an AM signal. Therefore, in applying this processing
method it is best to apply asymmetrical sawtooth modulation. In this case, because
of the inequality of sidebands, the necessary amplitude modulation holds for any
arbitrary position of the sidebands relative to the carrier, as shown in Figure
5.18(c).

A block diagram of this type of processing system is shown in Figure 5.19.
The principle of operation and structure of the Doppler signal processing block is
determined by the assigned function of the SRR and its technical parameters.

We must note that this SRR responds only to moving targets. It is a major ad-
vantage of this processing method that it allows very simple selection of moving
targets against a fixed background.

Band-selective Amplitude
filter nQp detector
From mixer] | Band-selective o] Amplitude > System of
filter (n+1)Qm detector Doppler signal Display
o e SN e § [ o M
~ Band-selective Amplitude
fitter 0 " | detector

Figure 5.19 Block diagram of the processing system using a parasitic AM signal.
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5.5 SIGNAL PROCESSING ON SEPARATE COMPONENTS OF THE
CONVERTED SIGNAL SPECTRUM

It is obvious from the previous discussion that the entire spectrum of the converted
signal is used for coverage of space by an SRR with spectral processing. Thus the
target range is determined rather coarsely, usually with an error of a few percent of
that range. The individual spectral components must be used for more exact mea-
surement of range and velocity.

5.5.1 Formation of the Discriminator Characteristic

The target range is estimated during a scan of range and azimuth with an error
approximately equal to the SRR target resolution. There is often a requirement for
more exact measurement of range to individual targets. It is possible to do this
using the fixed frequency deviation method described above with a suitable dis-
criminator characteristic (see Section 4.4.3). Such a characteristic can easily be
obtained for asymmetrical sawtooth modulation by subtracting the amplitudes of
two adjacent spectral components of the converted signal. The appropriate circuit
of this discriminator is shown in Figure 5.20. Here the components » and » + 1 are
extracted from the spectrum by bandpass filters. The fiiter output signals are de-
tected by amplitude detectors and applied to the subtraction block.

In the absence of weight processing the equation for the discriminator charac-
teristic is

UAf,t,n)=U sinn(&ft=m)_|sinn(dft=n-D)| (5.38)
T AfT—n) l (Aft—n-1) ‘
or
smn(%g—nji smn(ﬁ(—g—n—lj}
UAf,R,n) =U | [——>— ~ (5.39)
n(é'LR——n) n(Af—R—n—lj
150 150
Band-selective Amplitude
h fiter nQm ~ 1 detector |
From mixer Subtracter
Band-selective | Amplitude l
T filter (n+1)Qm | detector

Figure 5.20 Block diagram of the discriminator.
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where frequency deviation is in megahertz and range is in meters. A similar equa-
tion can also be written for weighted processing. Figure 5.21 shows the discrimi-
nator characteristics for unweighted and weighed processors.

To find the slope of the characteristic near its null, we differentiate (5.39) with
respect to R and substitute the appropriate value of R, obtaining for (a)

s=1272+! (5.40)
R
Similarly, for (b)
2n+1
§= 5.41
R (5.41)

An important parameter of the discriminator characteristic is its sidelobe
level. With a strong reflected signal there may be an automatic false lock on a
sidelobe of the discriminator characteristic. In this respect characteristic (b) is
preferable, since the level of its first sidelobe is more than 14 dB less than that of
(a).

The range error depends on many parameters of the automatic frequency de-
viation control system and on error in measurement of the deviation. It is possible,
however, to estimate the error using the discriminator characteristic. Assume that
in the established mode an error signal at the discriminator output is & times less
than the maximal value of the output signal. Then we find for characteristic (a)
3R = 1/kS and 8R/R = 1/[1.27k(2n — 1)] and for (b) SR/R = 2/[k(2n + 1)] or
SR/R ~ 1/2kn.

Note also that the discrimination characteristic does not depend upon Doppler
shift, which is an advantage of this discriminator.

UIU: e U e

o42
0s 05s
C(a5;
9, (47 B)
R R
PP oM

I 0,037 (-28.848) \/ I 0,018 (-35,8d8)

o

£05 (0-0. 0,005 (-21,54B) -0.5

b)
a)

Figure 5.21 Discriminator characteristics for (a) unweighted and (b) weighted processing.
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5.5.2 Phase Processing of Separate Components of the Converted Signal
Spectrum

5.5.2.1 Use of an FM Signal Instead of a Multiple-Frequency Signal

It has been shown [3] that phase processing of the reflected signal permits mea-
surement of target range with very small error. Thus, a multiple-frequency trans-
mitted signal consisting of several sinusoidal waves with different frequencies can
be used instead of a modulated signal. Such a radar is described in [3]. For con-
venience in further discussions, we will give a brief description of this radar,
whose block diagram is shown in Figure 5.22.

The transmitter consists of n oscillators with frequencies

0)1=m0,coz=u)0+60)1,coq=c00+8m2, ﬁ)n:(bo+60)n_1

where 8w, < 8w, ...< 8w, _; << w,- The oscillator signals are summed and applied
to the transmitting antenna. Signals from each oscillator are also applied to the
appropriate mixer as a heterodyne signal. All mixers are fed from the receiving
antenna. It is assumed that the decoupling between antennas is sufficient that leak-
age of the radiated signal between transmitter and receiver can be neglected. Use
of a single antenna may be possible because dw, << .

Receiving Tranamitting
antenna antenna

Pover  summec|
¥ .i. 1 C I T ]

Mixer | Mixer Muwer Transmitter | | Transmitter Transmitter

1 [ 2 ) nﬂ w w2 =T: W

Filter Filter Filter
1 r 2 l" !
e
1 [ ‘_Q_l 1
Phase Phase i1 Phase

detector 'dotsaor

Figure 5.22 Block diagram of the muitifrequency radar.
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A Doppler filter is included at the output of each mixer. If 8@, >> Qpuay, it is
possible to consider that each mixer will pass only that echo signal whose fre-
quency corresponds to the frequency of “its own” heterodyne signal. We assume
further that the target moves at a constant radial speed corresponding to the Dop-
pler shift Qp. Then, using (2.10) and (2.14) and assuming that Aw = 0, we obtain
expressions for the phases of mixer outputs

@4 (1,7) = Qpt + 0T, —y
@, (6,7) = Qpyt + 7, —
@3 (8,7) = Qpst + 0,7, — Py (5.42)

(pln (t’T) = QDnt + mnto - ¢0n

Because differences between signal frequencies are very small (as will be
shown below) we may assume that

Qp1=Qp=Qp3=...= Qp, and Qo = Qo2 =Pg3 =... = Py,

Then, for example, the phase difference between signals from mixers 1 and 2 is
Ao, (1) =0, (,7) -9, (1,7) = (0, —,) T, =80T,
and between mixers 2 and 3 is
A, 5 (1) =0, (,7) -0, (£,7) = (0, —0,) T, = (5w, —8w,) T,

Target range can be measured by determining this phase difference with a phase
detector. Thus, a limit of unambiguous measurement of range, restricted by the
size of phase difference Ag,_»(t) = 2=, is

e

R.=— (5.43)

B S,

The measurement error depends on the frequency separation and the error of
phase measurement. If we can measure a phase difference with an error of 1° the
measurement error at maximal range will be ~ 0.3%. By increasing the frequency
separation by a factor of ten we can reduce the error to ~ 0.03%, but then there
will be an ambiguity in measurement of range.

Thus there are two opposing requirements on the frequency separation: to re-
duce error the frequency separation should be increased, while for elimination of
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measurement ambiguity it should be reduced. To satisfy both of these require-
ments, the number of frequencies transmitted is usually increased to three, four, or
more. For example, with three frequencies the separation between the first two is
made small enough for unambiguous range measurement, while separation of the
third is large enough to provide the required accuracy of range measurement and is
a multiple of the separation of first two frequencies. If the required accuracy is not
provided by this, the number of frequencies can be increased.

Thus, by rather simple means, it is possible to realize the measurement of
range with an error no more than 0.001% or even 0.0001%. At the same time there
is a disadvantage to this method of measurement: the impossibility of range mea-
surement on fixed targets. To measure range to a fixed target we must install a
reflector on it to simulate a Doppler shift, but this is inconvenient and not always
possible. This disadvantage is avoided by application of FM to the transmission.

To establish the validity of this statement, we compare (5.42) with (2.27). As
we can see for Qp = 0 in (2.27) these formulas coincide except for phase shifts
n€2,,1/2, n(t) and v(t). Thus, the role of Doppler frequency is played by the modu-
lation frequency. The phase shifts 7Q,,t/2, (1), and v(t) are identical for signals
of all channels, and therefore are subtracted in measuring the phase differences.

However, comparing (5.42) with (2.27), we notice the following significant
difference. Each spectral component of the converted signal in (2.27), for any
modulation waveform, is formed by two signals: one in the positive frequency
domain and the other in the “negative” domain but moved to the domain of posi-
tive frequencies. The amplitudes »f these signals are identical for sinusoidal and
symmetrical sawtooth modulations [(3.8) and (3.30)], while for asymmetrical
sawtooth modulation they are different (3.20). But phase angles ¢, = .ty and ¢,
have different signs. The vector diagram for equal signal amplitudes is shown in
Figure 5.23(a). We can see that for change of angles ¢, = .ty and ¢y, the signal
vectors rotate in different directions, but the phase of the total signal remains con-
stant: only its amplitude varies. Hence, sine wave and symmetrical sawtooth
modulation are unacceptable in this case.

Q= %
nQmt ~ NQmT/2 NQmt ~ N T2

Pt Qo

a) b)

Figure 5.23 Vector diagrams for (a) sinusoidal and symmetrical sawtooth modulation, and (b) sym-
metrical sawtooth modulation.
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The necessary phase relationships may be obtained with asymmetrical saw-
tooth modulation. In this case the vector diagram is shown in Figure 5.23(b). Here
the phase of the total vector is defined mainly by the vector with the greater ampli-
tude, and phase of this vector is

nQt+y—nQ, % (5.44)

But y = ¢, —@, only for Aft = n, when the small vector is zero.
The angle v is easy to determine, using known formulas for the amplitude and
a phase of the sum of two sine waves

y= 4sinQ +4,sino,

(5.45)
A cos¢, + A4, cos,
Assuming that
_sinw(Aft-n)
- n(Aft~n)
_sinm(Aft+n)
- n(AfT+n)
Or=0. =Py, 9=, T @
we obtain
n
= arctan | — tan - 5.46
y=are [Aﬁ (o, (po)} (546)

Using this formula, we may determine the difference between the angles v
and ¢, — ¢y. The appropriate diagrams are given in Figure 5.24, where the ordinate
is the angle Ay = @, — g — y. The angle Ay = 0 at n/Aft = 1, increasing for devia-
tion from unity. This angle decreases with increased n because the ratio of the
smaller vector to the larger decreases. For example, n/Aft = 0.66 when n = 1 and
Aft= 1.5, and n/Afr = 0.95 when n = 10 and AfT = 10.5.

Hence, for example, if the spectral component n 2 10 is chosen to avoid a
parasitic amplitude modulation signal, then there are no special requirements for
stability of frequency deviation. If it is necessary to maintain the frequency devia-
tion at a constant level we may apply a very simple method (see Figure 5.25). A
small auxiliary sinusoidal amplitude modulation (e.g., a few percent) is applied to
the sawtooth modulating voltage. Because of the deviation modulation the selected
spectral component also appears modulated in amplitude. The envelope phase for
Aft > n differs by 180° from that for Aft < n, is detected by the amplitude detector,
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Figure 5.24 Graphs of phase measurement. error.

and applied to the phase detector. The output voltage of the phase detector is used
to control the frequency deviation and to maintain Aft = n.

Thus, to realize this method of converted signal processing, we must replace,
in circuit Figure 5.22, unmodulated oscillators by FM oscillators with appropriate
central frequency separations, and Doppler filters by filters tuned to the frequency
of selected spectral components of the converted signal. In other respects the cir-
cuit remains as shown. Realization of this circuit is not difficult. The bulkiest part
of this SRR is the microwave block, including the transmitter. It is simple to obtain
a small number of FM signals with separated central frequencies and in-phase
modulation, using a circuit similar to Figure 4.16. We may make other technical
choices, such as using a synthesizer as the transmitter exciter.

This SRR will also work for moving targets, but can be significantly simpli-
fied for measurement of range to fixed targets by omitting the simultaneous radia-

Un Amplitude | Phase
™1 detector ™1 detector
1
Sirusoidal
signal
generator
\
To Amplitude

*Transmitter modulator | Modulator

Figure 5.25 Block diagram of the control deviation system.
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tion of the several FM signals with different central frequencies, in the following
way. During a particular time interval, a signal with central frequency @, is radi-
ated, and the output of filter n<2,, is stored. During the next time interval, a signal
with central frequency o, + dm, is radiated, the filter output is again stored, and so
on. The stored signals are recovered from memory and the appropriate phase dif-
ferences between them are measured.

It is obvious that the standard transceiver-antenna microwave block may be
used in this case. The transmitter becomes simpler, as there is no need to radiate
simultaneously several signals with different central frequencies. Application of a
frequency synthesizer as the exciter permits very simple frequency switching and
provides the necessary stability of these frequencies. The time interval during
which the signal with one or another central frequency is radiated should be about
1007, This time will be sufficient to form the signal spectrum.

It is not necessary to store all the filter output signals (i.e., the sinusoid with
frequency nQ2,). It is enough to measure and remember the initial phase of this
sinusoid. As its frequency is known, a measurement of an initial phase is sufficient.
It is obvious that the phase difference between two signals is equal to the differ-
ence between their initial phases. Modern digital technology permits us to carry
out all necessary calculations.

5.5.2.2 Use of the Phase Angle © 1 [4]

Presence of a phase angle ®,t in the phase of each spectral component of the con-
verted signal permits us to measure increments of ranges with errors measured in
micrometers, a property that is certainly unique to FM SRR. For an illustration of
this statement consider an elementary calculation. Assume that a continuous un-
modulated signal with wavelength A is radiated toward a target. Then a reflected
signal phase shift of 360° is produced by a range change of A/2. If, for example,
A = 7.2 mm, then a 10-pm change produces 1° of phase shift.

Methods of phase difference measurement on continuous unmodulated signals
in centimeter and millimeter bands are well known, but they are so difficult that
they have not seen practical application. In FM SRR, the phase shift information
as the angle o.t is contained in any component of the converted signal spectrum.
Thus, there is an opportunity to measure the phase difference between transmiited
and received microwave signals using a low-frequency signal: the modulation
Jfrequency. This permits us to simplify considerably the actual phase meter and to
increase the measurement accuracy.

The SRR being considered uses the standard single-antenna transceiver ap-

proach, for which the converted signal spectrum processing system follows the
block diagram of Figure 5.26.

The reference signal for the phase detector is derived from the modulating
signal. The phase shifter in the reference signal circuit cancels the angles @, and
nQ,,7t/2, and shifts the phase detector characteristic working point to its linear re-
gion. The number of selected spectral components depends on target range, the
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From Narrowband Phase .
mixer filter N{m ™ detector *1 Display
From Narrowband %?\';gg'
modulator filter Ny, shifter

Figure 5.26 Block diagram of the phase processing system.

size of the parasitic amplitude modulation, and the frequency deviation of the
transmission.

The main thing to which we must pay attention here is the modulation wave-
form of the transmission. Sinusoidal modulation and symmetrical sawtooth modu-
lation are completely unacceptable, for reasons detailed in the previous section.
Only asymmetrical sawtooth modulation is applicable. The adjustment of fre-
quency deviation can be made to obtain Aft = n, using the circuit Figure 5.25. It
must be emphasized, however, that this type of SRR is not applicable to measure-
ment of moving targets at ranges of tens or hundreds meters. It can be used very
effectively to measure small target motions at ranges from fractions of a meter to
several meters. As an example of application of such an SRR, we will give a brief
description of an instrument for measuring the vibration levels and steam pressures
inside steam turbines [5].

The standard single-antenna transceiver is used, but the propagation of elec-
tromagnetic energy to the target {reflecting surface) and back is in a waveguide
whose open end is placed 2 to 3 mm from the vibrating element. This ensures a
minimum illuminated area, which in turn, reduces measurement errors. Measure-
ments of continuous vibrations of turbine components can be achieved during op-
eration using a waveguide projecting into the turbine case. Heating the waveguide
will not affect measurement, as the radio unit is outside the turbine case.

Measurement of steam pressure inside a turbine case is currently made by
placing a metal membrane on the case. Pressure bends the membrane, and the
amount of bending, proportional to pressure, is measured using a strain gauge.
Strain gauges require cooling, and it is impossible to measure pressure inside the
turbine case in this way because the steam temperature reaches 500°C at pressures
up to 200 atmospheres.

The problem of pressure measurement is solved by using a radar measuring
instrument in the following way. We insert a waveguide through the turbine case,
terminating it with a horn covered by a membrane. Deformation of the center of
the membrane is measured. Steam pressure measurement is possible at almost any
location inside the turbine case by appropriate bending of the waveguide.
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5.5.2.3 Use of the Phase Angle nQy1/2

The method of range measurement using the phase angle nQ,,1/2 is based on the
fact that this angle appears in the phase of all spectral components of the converted
signal. Hence, we must extract the nth spectral component and apply it to the
phase detector. As a reference signal for the phase detector we use the nth har-
monic of the modulating signal. Then, at the output of the phase detector we obtain
a voltage directly proportional to the target range. However, the use of phase angle
nQ),1/2 in ranging requires observance of several conditions:

(1) We must cancel the angles Qpt, @, and @y;

(2) We must ensure T, > 27, to obtain unambiguous readout of range;

(3) The selected component of a converted signal spectrum must have no
zero values in the interval of measured range.

Let us consider possible ways of obtaining these conditions. A method of can-
celing angles Qpf, @, and @, is known and applied in communication systems for
restoration of the carrier in a balance-modulated AM signal. It is based on apply-
ing the signal to a square-law multiplier (squarer), after which a bandpass filter
extracts the usual AM signal with unity modulation factor. As is known, the spec-
trum of a signal with balanced sine wave AM consists of two components

Ucos(wyt—Q,t—¢) and U cos(w,t+Q,t+¢) (5.47)

If this signal is applied to the square-law multiplier whose output goes through
a filter passing frequencies in the vicinity of 2wy, we obtain

%UZ cos(2myt —2Q,,t —2¢)
+U?cos 2wt (5.48)

+%U2 cos (2w, +2Q,¢ +2¢)

As we can see, there are no angles 2Q,,t and ¢ in the phase of the second term in
(5.48). Hence, to cancel angles Qpt, ¢, and @, we must use a modulation such
that the converted signal spectrum consists of pairs of the components with identi-
cal amplitudes and phase angles Qpt, @., and ¢, but having opposite signs. The
spectra of converted signals with sinusoidal or symmetrical sawtooth modulation
have such properties (see Sections 3.1 and 3.3.2).

As follows from (3.8) and (3.30), we may represent any pair of components of
the converted signal spectrum as
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U, c:os(nQ,,‘t +Qt+¢, -, —nQ), %)
(5.49)
U, cos[nQ,,‘t -Qpt-p, +¢, —nQ, %j

If this pair is applied to a square-law multiplier, the output of a bandpass filter will
be

2
n

COs

2(ant+QDt+q>r — @, —nQ2, %ﬂ
+U} cos(2nQ2,7 —nQ, 1) (5.50)

-

U
+7"cc»s{2(n£2mt—QDt -Q, +¢,-nQ, %H

The resulting filter output is an AM signal with modulation frequency 2Qp
and unity modulation factor. Fron: this it is clear that the filter must reject spectral
sidelobes in order to obtain a signal, represented by the second term in (5.50), that
is free of angles Qpt, @, and @,. Otherwise, the signal at the phase detector output
will be modulated in amplitude, and measurement of phase difference becomes
impossible. We notice that it is best to use the phase detector — lowpass filter sys-
tem to obtain the signal U} cos(2nQ,.t — n2,7). A block diagram of the appropri-
ate processing system is shown in Figure 5.27.

From this analysis, it also follows that the method is applicable only to mov-
ing targets. If Qp = 0 and @, + ¢ = tn, the signal at the phase detector input is
zero. Additionally, the last equality repeats with changes of target range by multi-
ples of half the transmitted wavelength.

In the absence of target motion, the Doppler effect can be simulated by use of
dual modulation (see Sections 3.2 and 4.5.2), sinusoidal modulation being the
most convenient.

From Bandpass | Narrowband Phase .
—~mxer > fitter N0, _’-'_’ filter 200 detacor Display

From m Narrowband Control
odulator filter 2nQly, phase shifter

Figure 5.27 Block diagram of second type of phase processing system.
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Chapter 6

Analysis of Constant Frequency Oscillators

The signals used in radio systems are usually sinusoidal:
u(t) =Ucos (0t +@) (6.1)

and the transmitted information is contained in modulation of the amplitude U, the
radian frequency ®, or the phase @. In most cases (even with pulse modulation),
amplitude, frequency, and phase vary slowly during the period of the carrier:

l—d»q» <<1, d—(P <<1 (6.2)

Udot dot

On the basis of these assumptions initially formulated by Van der Pol [1], it is
possible to decrease the order of the initial differential equations by reducing them
to so-called “abbreviated” equations for slowly varying amplitude and phase, to
facilitate study. Using this approach, called the method of slowly varying ampli-
tudes (SVA), it is possible to describe a wide variety of tasks in the theory of oscil-
lations [2].

In formulating the abbreviated equations the researcher proceeds from the
complete differential equations usually expressed in time or in operator form. The
procedure for obtaining the abbreviated equations in the time form appears tedious
and leads to the goal only for simple systems (e.g., for second or third orders).
Simplifications in the analysis can be achieved by use of the operator method,
which allows us to formalize writing of the abbreviated equations. The method of
symbolic abbreviated equations (SAE), developed by S. Evtianov, is based on this
idea, being one of most convenient from the engineering point of view [3]. It is
especially attractive for systems of high order or for complex systems subject to
external effects, such as autodynes for short-range radar systems.
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Y3
( v
|

L
Ia!

tL Y2

Figure 6.1 Basic circuit of single-tuned oscillator.

In this chapter a substantiation of the SAE method is first given, and elemen-
tary examples of its application are carried out and then applied to cases of multi-
ple-order oscillator systems based on complex active bandpass elements.

6.1 RULE FOR OBTAINING THE ABBREVIATED EQUATIONS

Let us consider the single-tuned oscillator with an inertialess active element, say, a
bipolar transistor in the range of frequencies where it is possible to neglect its iner-
tial properties (Figure 6.1). Neglecting the entrance current of the transistor, the
differential equation of the oscillator connecting the time-varying values of the
input voltage u(#), and collector current i(¢), is possible to write in a symbolic
form:

y(jo) u=i(u) (6.3)

Here  y(j ®) = y(j w)/ky, is the control admittance,
¥ss(j @) is the admittance of the selective system (load),
kp=-U/U ., 1s the complex feedback factor of the oscillator, and
Jjo=d/dt is the symbolic operator of differentiation.
Examples of single-tuned oscillator circuits are given in Figure 6.2.
Equation (6.3) is correct for oscillators with inertialess two-pole active ele-
ments (AE) as well (e.g., for tunnel diodes). In this case for y(j ®) the admittance

Circuit 1 Circuit 2 Circuit 3 Circuit 4

Figure 6.2 Examples of single-tuned oscillators.
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between connection points of the two-pole AE (points a-b in Figure 6.2, Circuit 4)
is understood.

Let us consider as a concret¢: example the circuit with transformer feedback
(Figure 6.2, Circuit 1), for which by the usual rules of circuit theory we find:

. 2 .
(jo) LC+ joCR+1 ky — oM

o) = k joM
Fu (j ) joL+r joL+r
Having entered the natural resonant frequency of the circuit o, =1/VJLC , its at-

tenuation & = ®yCR and the control resistance at a resonance R = M/CR, we
obtain:

. . 2 .
) jo :&;:(ju)/mo) +8jo/ o, +1 (6.4)
o, ) kg SR jw/®,

Considering jo/w, as the operator of differentiation p = d/dt in dimensionless
time T = ¢, we will write on the basis of (6.3) and (6.4) the differential equations
of the oscillator in operator form

(p2 + 5p+1) u="5Rpi(u) (6.5)
or in time form
du 59 —sr L (6.6)
dt” dt dt

Before explaining the essence of the SAE method, we will obtain from (6.6)
the abbreviated equations using the well-known Van der Pol method [1]. Thus we
find a solution as:

u(t):U(r)cos[rJr(p(r)] (6.7)
where U and ¢ are slowly varying functions of time, that is,

id_U~5 lf.{z_U_~52 i‘E
dt

U dt T U dd

~3, ﬂ:‘zf~52
dt

s

The circuit attenuation 8 is assumed here to be small.
The current i is represented by a Fourier series and we keep only the first
harmonic component:

i(t)=1, (T)COS[T-F(p(‘C):l (6.8)
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Let us differentiate (6.7) and (6.8) with respect to T and substitute the expressions
for derivatives in (6.6). Equating the coefficients for sin(t + ¢) and at cos(t + ¢),

we have:
—2d—U[1+ﬂ) 8U(1+ d"’) _8RI, [ d“’)
dt dr d-r dt dt

2 2
d—z—U( ﬂ) +8£(1+U=8Rﬂ
d dt dt dt

Neglecting the terms of order 5%, we obtain the system of abbreviated equations
Z=—+U=R] 6.9)

de/dt=0 (6.10)

Let us now carry out the following formal procedure. Consider expression
(6.4) near to the resonant frequency (i.e., assume ® = wp + Aw, where Aw/w, = d is
a small frequency disturbance). Replacing w/wg in (6.4) with 1 + A®/®, and keep-
ing only the first-order terms, we obtain the approximate expression Y{(jAm) de-
scribing the behavior of admittance y(jw) near the resonant frequency:

d+2jAm/ o,

Y(jrw)= SR

(6.11)

Considerin.g that abbreviated admittance (6.1 1) relates the complex amplitudes of
a current I, = ,¢’® and voltage U =Ue’®, and that the term jAw/@, corresponds to
the differentiation operator p = d/dr, from

Y(jAw/o,) U=I (6.12)

it is possible to obtain directly the abbreviated operating equations. Actually, from
(6.12) we have:

(8+2 d )Ue"" = 8RI,e”

or

U+sz 12Uﬂ=R[1
8 drt 6 drt

Dividing the real and imaginary parts, we obtain the system of equations (6.9) and
(6.10).
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Thus, it is possible to formulate the following rule for drawing up the abbrevi-
ated equations according to the S. Evtianov method:

1) We enter complex slowly varying amplitudes of signals (complex enve-
lopes) written using the resonant frequency wg;

2) We enter a small frequency disturbance and simplify the expression for
symbolic admittance (or impedance) in the vicinity of the resonant frequency;

3) Replacing in the symbolic equation (6.12) for complex envelopes the
small frequency disturbance jAw/w, by the differentiation operator p = d/dt and
dividing the real and imaginary parts, we obtain the abbreviated equations in time
form.

Though this rule is formulated here on a basis of a rather simple example (a
single-tuned oscillator with fixed bias voltage), it can be applied as well to the
analysis of more complex circuits. Let us show it first for autonomous non-
modulated systems.

6.2 SUBSTANTIATION OF THE SAE METHOD

Let us consider the symbolic equation
v(p) u=i(u) (6.13)

A feature of the selectivity systems commonly used is that in the denominator of
the expression for admittance it is always possible to allocate a small parameter &
at least in the first degree:

(6.14)

Having substituted (6.14) in (6.13, we obtain the symbolic equation of the oscilla-
tor:

Q(p.8) u=8P(p,8) i(u) (6.15)

Free oscillations of a conservative system are described by the equation (6.15) at
5= 0 (i.e.,, by the equation Q(p,0)u = 0). By virtue of system conservatism the
characteristic polynomial Q(p,0) can have only imaginary conjugated roots, if the
polynomial degree is even. If the degree is odd, a zero root is added to the imagi-
nary roots, and the solution looks like:

u =—(E—l-7i,,,»,)+2,':Uk cos(@,f+¢, ) (6.16)
k=1
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where: @ are the roots of the equation Q(j®,0) = 0 with 2# or 2n + 1 degrees;
E, U, and @y are arbitrary constants, dependent upon the initial condi-
tions; and

E_. is the initial bias voltage of the active element (amplifying device).

init

According to the SVA method we will find the solution of equation (6.15) as
(6.16), assuming that arbitrary constants E, Uy, and ¢, are slowly varying functions
of time. Among natural frequencies @y, two or more can differ from each other by
amounts near 5. It is possible to replace the sum of such components in (6.16),
having chosen as the natural frequency oo = ®,, by one component with a new
amplitude and phase, still slowly varying. The total number of components in the
sum in (6.16) will decrease and be equal to the number of nonoverlapped pass-
bands of the selective system. The required solution will be of the form:

w=—(E-Ey)+ S U, (1)cos[wnt + 04 (1)] 6.17)

Let us substitute (6.17) in the right part of (6.15) and expand as a Fourier series
the current i[u(f)] as a function of time. Assuming that the frequencies wq are not
harmonically related, we will keep in the decomposition only the basic compo-
nents with frequencies mgy

!
i=I,(E,Uy U )+ D I (E U, U, Yoos (@2 +9,) (6.18)
k=1

Here the components I, are functions of a bias voltage E and of amplitudes Uy
The precondition about slowly changing E and U, allows us in the spectral analy-
sis to consider them constant during the period of oscillation.

Having substituted (6.17) and (6.18) in (6.15), we obtain one equation for
E():

~0(p,8) (E-Ep)=5 P(p,d)1, (6.19)

and / equations for amplitudes of the form:
O(p,8)Ux & =8 P(p,8) Ix & (6.19b)

where Uy =U,e’*, Iy =1’ are complex amplitudes or complex envelopes of
signals (k=1, 2, ... [).

The system (6.19) is simplified in comparison with the complete equation
(6.15) due to neglecting the combinative components of a spectrum. This is possi-
ble because the linear part of the system has highly selective properties near the
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resonant frequencies. Let us notice that it is impossible to reduce (6.19b) by the
exponential multiplier ’*°* | as it stands under the differential operator. In order to

carry it out, we apply the theorem of displacement for operational polynomials.
Instead of (6.19b) we shall write:

Q(p+ joy,,8 ) —6P(p+](o0k,6) (6.19¢)

This result can be treated as the introduction of the displaced operator, p; = — jog,
working on complex envelopes of signals, instead of the operator p working on
instant values. Actually, equation (6.19¢) is obtained from (6.19b) after formal

replacement p = py + joy, with the subsequent rejection of an index at the new
displaced operator.

The equations in the form (6.19a) and (6.19¢) are convenient for the simpli-
fied realization used in the SVA method. The slowness of change E(¢) and U . (t)

means that derivatives of order # from E, U«, and @, are the sizes that have nth
order of smallness

an~ 5" ,

P Uil ~ 8'U. (6.20)

This allows us to consider the operator p as having the order 8 and to formalize
sorting the components in the order of their smallness.

Let us consider the procedure of abbreviation in detail, using as an example
one of the system equations (i.e., we will fix an index k). The results obtained for
k= 0 will apply to equation (6.12}.

Upon sorting the members according to their order of smallness we will take
into account that Q(j wex+ p,0) and P(j we, + p,8) are polynomials in p and 8 (that
is, they can be expanded in double Taylor series in p and 3 near the point (jw,0)
with the number of terms

1 l am+nQ j(l) ) e
O(jou +,8)= Zm!nﬁa(ma*s‘ik“)p ° (6:212)

M N 1 1 am+nP(]w0k ,O)
P o) —_— L p"§" 6.21b
(o +p8) =2 2™ e (6:210)

Having substituted these decompositions in equation (6.19b), we will write it as:

0 66” m=0 n=0 m' n' 6p’"68"
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Here, the sizes calculated at p = joo, and 8 = 0 are given in square brackets (i.e.,
for conservative systems).

Let us now obtain from (6.22) the equations of the first approximation. For
this purpose it is necessary to equate on the left and on the right the terms of one
(initially the first) order of smallness. If in this equation there appears an identity
such as 0 = 0, it is then necessary to keep the terms of the second order of small-
ness, and so forth.

Let us take into account that the order of terms in the left part is equal to a to-
tal degree p™8", and in the right to m + n + 1 because of the presence of the multi-
plier 5 before the double sum. Keeping the components not higher than the first
order of smallness, we obtain the required equation in symbolic form:

{[%ﬂ p+[%?]a+[g]} 0, =5[P]1 (623)

Here [Q] = Q(jou,0). Let us remember that the basic frequency wyy is generally
near, but not equal to, o, one of the resonant frequencies of the conservative sys-
tem, and consequently O(jog) # 0. Let us consider at first the case of exact equal-
ity of frequencies ®g, = @, when [Q] = 0.

In (6.23), as was mentioned, there can appear an identity such as 0 = 0, that
is,

[ ] [o]= [ } [P]=0 (6.24)

that is characteristic for systems with two degrees of freedom, when the difference
between the natural frequencies has the order 8. Such systems are, to a first ap-
proximation, described by a symbolic abbreviated equation of the second order.
To obtain it, we will leave in (6.22) members of the order *:

Q| .a.zg Q|2 1 _ _6£ a_P .
{ |:6p :lp +|:8p68]p8+ [852 ]5 } Uk—5{|:apj|p+|:68:|5} I (6.25)

This equation, in turn, for systems with three or more degrees of freedom and
close resonant frequencies, appears as an identity. Thus all terms in square brack-
ets in (6.25) are equal to zero. Continuing the process, it is possible to show that
the order of the symbolic abbreviated equation is equal to the number of resonant
frequencies lying in the appropriate passband of the selectivity system. Let us no-
tice that the symbolical abbreviated equations can be written in a form similar to
the complete equation:

Y(p)Us =1Ix (6.26)
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Here, Y(p) is the abbreviated admittance and p is the differential operator.

So, for reception of the abbreviated equations it is enough to proceed from in-
stantaneous values of voltages and currents to their complex envelopes and to find
the expressions for symbolic admittance near the resonant frequencies. It is easy to
do this by consideration of specific auto-oscillatory systems. Moreover, the simpli-
fied expressions for admittance are: familiar to radio engineers and are widely used
in practice. So, the symbolic simplified admittance in (6.23) corresponds to a sin-
gle-tuned oscillatory circuit, and in (6.25) to double-tuned systems with closely
spaced individual frequencies.

Let us return to the complete system of the abbreviated equations. In accor-
dance with (6.19), it consists of / + 1 equations, where / is the number of non-
overlapping passbands of the selective system. One more equation following from
(6.19a) corresponds to slowly varying bias voltage:

~Q(p,8)(E-E,,)=8 P(p,8)1,(E,U,, .. U)) (6.27)

When we refer to (6.27) as about the abbreviated one, we mean that the operator p
in it works on constant components of a control voltage £ and current /. The order
of this equation is defined by inertial properties of the automatic bias circuit and is
equal to the number of roots of the equation Q(p,8) = 0, located within & of the
origin of coordinates in the complex plane of roots.

We study mainly single-frequency oscillations where it is assumed that the se-
lective system has a single passbind, or that the conditions for self-excitation at
other frequencies are not present. Under these preconditions the oscillator is de-
scribed by two abbreviated equations such as (6.23) for the complex envelope of
high-frequency voltage and (6.27) for an automatic bias circuit (if it is present).

6.3 EXAMPLES OF DERIVING THE ABBREVIATED EQUATIONS
6.3.1  Single-Tuned Oscillator with Fixed Bias Voltage

Let us consider an oscillator using, for example, a tunnel diode (Figure 6.2, Circuit
4). The active element (diode) is considered as the noninertial device with a mono-
tonic voltage-current characteristic i(u). Let us neglect the nonlinear property of
the p-n junction, the inductance of the wire leads, and other parasitic parameters.

The symbolic equation for the oscillator is in the form (6.13), where the ad-
mittance between the anode and cathode of the diode is

p*LC+ pCR+1

6.28
pL+r ( )

y(p)=

Neglecting the losses (considering » = 0), we find the resonant frequency of the
oscillatory system: ®, =+/LC . Having entered the attenuation of an oscillatory
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circuit 8 = r/(wyL) and the resonant resistance R = w,L /3 of the circuit, we shall
write (6.28) as:

y( )=L(P/m0)2 +8(p/w,)+1

(p/oy)+5 (6.29)

According to the SAE method it is necessary to find the symbolic admittance
Y(j oy + p) displaced in frequency. Replacing p in (6.29) with jo, + p and group-
ing the terms according to their orders of smallness, we have

1 2j(p/m0)+j5+(p/0)0)2 +8(p/a,)
S R j+(p/oy)+8

Y(jo, +p)= (6.30)

Keeping only members of first-order smallness concerning small attenuation (we
consider formally p/o, = 8), we obtain the expression for abbreviated admittance:

8§+2p/
Y (p)=——6’;2 o 6.31)

or
Y(p)=G, (1+pT) (6.32)

where: G, = 1/R is the resonant conductivity of the selective system, and
T = 2/wd is its time constant.
The substitution (6.32) in (6.26) glves the symbolical abbreviated equation in
the complex form:

(pT+1)U =R

Taking into account that U=Ue®, I =1,¢’°, and replacing p with d/dt, we
have:

o1 U4 ju ) e = R e (6.33)
dt dt !

After reduction by the multiplier ¢/® and allocation of real and imaginary parts in
(6.33), we obtain two equations in the time form:

du

% v-ri,v), T%=0
dt

U (6.34)

Similar equations apply for all single-tuned oscillators with noninertial AE. The
formulas for the account of parameters wq, ks, R, and R of Circuits 1-4 in Figure
6.2 are given in Table 6.1.
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Table 6.1
Formulas for Calculation of Parameters of Single-Tuned Oscillators
Circuit Number in Figure 6.2
Parameter
1 2 3 4
oo i 1 C +C, !
JILC JL+L)C, L,C.C, JLc
ks ML L Ly C/Ca 1
Ry (0, L) (0,L,) 1 (o, LY
r r r(e,C ) r
R o, ML (0,1,) ! b
r r r(w,C,)*

The first part of (6.34) describes the transient process of oscillation amplitude
U, while the second part determines frequency of fluctuations ® = @y + do/dt. As
we see, in the case of noninertial AE do/dt = 0, the frequency (as a first approxi-
mation) is constant at ® = @y and does not depend on amplitude either in the tran-
sient or steady-state mode. Such oscillators are called isochronous. Basically all
oscillators are anisochronous; however, in a case of noninertial AE the frequency
change is proportional to &° and can be found from the abbreviated equations of
the second approximation.

The first part of (6.34a) assumes simple physical treatment, for which we will
write it as:

Tav_, w)-< (6.35)

For an active element, the dependence of the first harmonic of a current upon
the amplitude of oscillations Z;(U} is referred to as the oscillatory characteristic of
an active element. The choice of an operating point on the voltage-current charac-
teristic i(#) determines the type cf the oscillatory characteristic [Figure 6.3(a, b)].
In Figure 6.3 the direct lines U/R, called feedback straight lines, are also shown. In
accordance with (6.35), the difference between the oscillatory characteristic and
feedback lines is proportional to derivative dU/dt [Figure 6.3(c, d)]. The points of
crossing of the oscillatory characteristic and feedback lines, in which dU/dt=0

and, accordingly, the amplitude (' is constant, determine the steady-state modes of
the oscillator

L (U)=U/R (6.36)

The function [;(U) describes a high-frequency current delivered by the AE to an
oscillatory circuit, and U/R is the high-frequency current consumed by a circuit.
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Figure 6.3 Operating points for different oscillator circuits.

When the generated and consumed currents are equal there is a stationary mode of
oscillations. If the generated current is more than consumed: I,(U) > UIR,
dU/dt> 0 (i.e., the amplitude of oscillations increases), while if I;(U) < UIR,
dU/dt < 0 and the amplitude falls. This permits judging the stability of the station-
ary modes.

From Figure 6.3(a) we can see that the oscillator has stationary modes at two
points: U = 0 and U = Uj. The point of rest U = 0 is unstable. The amplitude of
oscillations, since small values increase, approaches U;. Such a mode of oscilla-
tion excitation is referred to as soft. If under the influence of any of external or
internal effect the amplitude exceeds Uj, the derivative dU/dt becomes less than
zero and the amplitude will return to the value U,. This means that the stationary
mode of oscillations is stable.

In Figure 6.3(b) (for an oscillatory characteristic of another type) there are
three stationary mode points: U = 0, U = U, and U = U,. The point of rest is lo-
cally stable: if U < U, dU/dt < 0 and in the course of time U — 0 (i.e., small in-
crements around a point of rest fade and the operating point comes back to a point
U = 0). If under influence of a large input (for example, a shock excitation), the
amplitude U becomes more than U), the fluctuations will increase, approaching an
amplitude U,. With further increase of amplitude (for any reason), the operating
point returns to a point U,. Hence, the stationary mode at a point U= U, appears
locally stable. Such a mode of oscillation excitation is referred to as rigid.

Let us write the conditions of local stability of stationary modes in analytical
form. From Figure 6.3 we can see that the stationary modes are stable if dI,/dU <
1/R. Let us transform this expression for a stable point. Here U — 0 and /; = SU,
where S is the slope of the voltage-current characteristic i(x) at the operating
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point. Hence, dI,/dU = S and the conditions of self-excitation of oscillations take
the form

S>> 1/R or SR>1 (6.37)

For points of a stationary mode with final amplitude we will enter an average slope
S, of the oscillatory characteristic I, = S;(U)U. Calculating from this derivative
dl/dU = 8§, + UdS,/dU and taking into account that in the stationary mode Sy(U) =
1/R, we obtain for the condition cf stability:

as, /dU <0 (6.38)

The geometrical interpretation of conditions (6.37) and (6.38) is shown in Fig-
ure 6.3(c, d). For monotonic dependence of $,(U) only one stationary point with
nonzero amplitude {Figure 6.3(c)| exists that appears stable for soft self-excitation.
For nonmonotonic dependence of S|{U/) we have two stationary points with non-
zero amplitude: the point with the greater amplitude is locally stable, and that with
smaller amplitude is locally unstable. No point of a stationary mode has global
stability. The self-excitation here appears rigid.

6.3.2  Single-Tuned Oscillator with Automatic Bias

If automatic bias is used in the nscillator, the mode of an active element will be
determined not only by the value of the oscillation amplitude, but also by the value
of a bias voltage E at the operating point. The abbreviated equation for a slowly
varying bias voltage should be added to the abbreviated equations for complex
slope of the control voltage in this case. Consider that in the equations for the first
approximation it is usually possible to neglect any reduction in the constant volt-
age in the high-frequency circuit. Equating the voltage of an initial bias source
E,,;; to the sum of the voltage on the autobias circuit and the input of the AE, we
obtain the symbolic abbreviated equation for a bias voltage E:

A

= (6.39)
““1.0)

Here:  Io(E,U) is the constant component of current of an active element de-
pendent both on amplitude and on bias voltage, and
Yy p) is the admittance of the autobias circuit.
For the usual RC circuits of autobias (Figure 6.2, Circuits 1 and 4)

-y _L+pT,
()= (640

em
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where T.,, = R..C.m 15 the time constant of the autobias circuit.

Recall that p is here the differentiation operator applied to constant compo-
nents of signals E and /. Substituting (6.40) in (6.39) and replacing p with d/dt we
obtain the abbreviated equation for the autobias circuit in time form. Combining 1t
with (6.34), we write the complete system of the abbreviated equations for an os-
cillator with autobias circuit:

7% U= R, (U,E),
dt
149 _q, (6.41)
dt
T;m %+E=Einil _RemIO (U’E)

The second equation, as before, concerns the isochronous feature of the oscillator
(as a first approximation). For study of transients in the circuit it is necessary to
solve the first and last parts of (6.41) simultaneously, as both parts include nonlin-
ear functions (/; and ) of E and U.

Having put in (6.41) dU/dt = 0 and dE/dt =0, we obtain the system of the
equations determining stationary modes of the oscillator:

U =Rl (U,E)

(6.42)
E= Einit - RemIO (U’E)

Notice that the approach using the oscillatory characteristics (effective in study of
oscillators with fixed bias E = E,,; = const) cannot directly be used in this case.
For the solution of system (6.42), two approaches can be used.

First, it is possible to calculate or measure experimentally the so-called dy-
namic oscillatory characteristics - the dependence of I;{U) on bias voltage E, de-
termined by (6.42b). The amplitude U is set, and (6.42b) yields the appropriate
bias voltage, where the values of £ and U define the first harmonic of current
Li(E,U). Experimental values may be measured similarly. An active element (for
example, diode in Circuit 4, Figure 6.2) may be considered together with an auto
bias circuit (i.e., concerning points 1, 2). To these points, a variable voltage with
slowly varying amplitude U is supplied and the first harmonic of the AE current is
measured. If the amplitude U varies so slowly that at each value of U the station-
ary value of auto bias voltage E has time to be established, the result of the ex-
periment is the dynamic oscillatory characteristic /;(E, U). The points of its cross-
ing a feedback line U/R define stationary modes of the oscillator.

Such an approach allows us to judge correctly the transients and stability of
stationary modes, provided that the processes in the auto bias circuit occur much
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faster than in an oscillatory circuit (7,, << T). This is called the case of non-
inertial autobias.

Generally with comparable 7., and T it is expedient to use the approach of
cutoff and bias diagrams. The dependence of U(E), following the first part of
(6.42), is referred to as the cutoff diagram, and dependence of E(U), in the second
part, as the bias diagram.

Physically, the cutoff diagram determines the dependence of oscillation ampli-
tude U on bias voltage E for fixed parameters of the high-frequency circuit of the
oscillator (control resistance R, feedback factor, etc.). The bias diagram deter-
mines a voltage F, established in the autobias circuit of the oscillator for a given
amplitude U and constant parameters of the autobias circuit. The points of cross-
ing of the cutoff and bias diagrams correspond to stationary modes of the oscilla-
tor.

Moreover, the plane (£, U) can be considered as the phase plane of an oscilla-
tor with autobias circuit. The term “phase” does not imply that the phases of sig-
nals are examined on a plane. The phase plane method was used for the first time
in the theory of nonlinear fluctuations for consideration of the phase condition in
mechanics, from which the name was derived. On the phase plane each point cor-
responds to specific values of oscillation amplitude and bias voltage, and move-
ment on the phase plane correspends to the laws of change in time of these pa-
rameters. The phase plane method (or the more general method of phase space) is
very convenient for qualitative studies of nonlinear dynamic systems, to which
autodyne signal converters belong.

Having solved equations (6.41) for the derivative and having divided the first
equation by the second (i.e., having excluded time), we obtain the differential
equation for phase trajectories:

au T, _RLEU)-U (6.43)
dE T E,_-R I(E.U)-E

init

The application of the phase plane for study of transients in oscillators is discussed
in detail in [3]. Here we consider two elementary cases:

(H T <<T;
) T,>>T.

Notice that on the cutoff diagram the numerator of the fraction in (6.43) goes to
zero (i.e., the cutoff diagram on a plane (E,U) is the isoclinal line of horizontal
tangent (ILHT) to phase trajectorices: dU/dE = ). On the contrary, in points of the
bias diagram the denominator in (€.43) goes to zero, meaning that the bias diagram
is the isoclinal line of vertical tangent (ILVT) to phase trajectories: dU/dE — .
In the first case (7,,, — 0), in accordance with (6.43), dU/dE — 0 at all points
(E,UN, except for the bias diagram. This means that for any point in the phase
plane the corresponding point on the bias diagram moves horizontally (at constant
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a) b)

Figure 6.4 Phase portraits for (a) extra-low T.n, and (b) extra-large Tom.

amplitude U) and further in the bias diagram moves to a point of a stationary
mode [Figure 6.4(a)]. The direction of movement in the bias diagram is deter-
mined from the equation (6.41a): dU/dt > 0 “inside” the cutoff diagram and dU/dt
< 0 outside of it. From the phase portrait in Figure 6.4(a) we can see that the point
of rest A is unstable, the fluctuations increase softly, and the stationary mode in a
point B is stable.

Another picture appears for significant inertiality of the bias circuit
(T.,/T —> ). In this case, in accordance with (6.43), dU/dE — o at any point out-
side of the cutoff diagram. Physically, it means that the processes in the oscillating
circuit occur much faster than in the autobias circuit, and the representing point
from any point on a plane (E,U) moves vertically in the cutoff diagram [Figure
6.4(b)]. The movement in the cutoff diagram is determined by (6.41b) for an auto-
bias circuit: dE/dt < 0 for points laying more to the right of the bias diagram and,
on the contrary, dE/dt > 0 for points to the left of it. As a result both the point of
rest A and the point of the stationary mode B appear unstable. From the point of
rest, the representing point quickly passes to a point C on the cutoff diagram, and
then slowly (at the rate of the time constant 7,,,) to a point D, where the tangent to
the cutoff diagram is vertical. From here the point can move only to the left or
downwards. The movement downward prevails (i.e., the amplitude U falls rapidly
to zero at the rate of the time constant of a contour 7). Further, condenser C,, is
uncharged (voltage E grows) so long as conditions of self-excitation of oscillations
are again executed. This occurs at point A;, the amplitude here increases up to
value at the point C;, and then the process repeats. There is a limiting cycle
A,C,DK, appropriate to faltering generation.

6.4 GENERAL ABBREVIATED AND CHARACTERISTIC
EQUATIONS OF ANISOCHRONOUS OSCILLATORS

Studies of low-frequency oscillators usually take into account only one nonlinear
parameter of an active element - the slope of the output current averaged on the
first harmonic, assuming that it is a real function. It is equivalent to the replace-
ment of the active element by an inertialess one-port network.
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It i1s impossible in most cases to consider active elements of modern micro-
wave diode oscillators used in autodyne SRRs as inertialess, and they should be
frequently represented at high frequency by a unique but complex parameter. This
complicates the study. It is even more difficult to study processes in high-
frequency transistor oscillators. The basic feature of transistors as active elements
of high-frequency oscillators is the need to represent them by two-port networks,
all four characteristic parameters of which are nonlinear and complex.

The purpose of this section is to derive general abbreviated and characteristic
equations for high-frequency transistor oscillators. At the same time a unique re-
striction can be applied to the inertia of an active element: the rather weak fre-
quency dependence of its parameters within the passband of the oscillatory system,
though the delay time of a signal in an active element can be significant. The ma-
jority of microwave amplifying devices satisfies these conditions, and therefore
their general equations can be used for the analysis of single-frequency modes of
oscillators using transistors, klystrons, tunnel diodes, Gunn and Reed diodes, and
so forth.

6.4.1  Abbreviated Equations of Anisochronous Oscillators

The generalized so-called three-port circuit of the oscillator studied is given in
Figure 6.5(a). For analysis it can be reduced to the circuit with an ideal trans-
former shown in Figure 6.5(b), which is more convenient for study. The active
element in the circuit is represented by a two-port network with common, input,
and output electrodes. The circuit with an ideal transformer is characterized by the
transformation factor &, admittance of dispersion y,, and output admittance Y;; of
the oscillatory system. The relation between these parameters and the elements of
the three-terminal circuit is determined by the following formulas:

AL ¢ ML 235,
cor Y,+Y, I Y, +Y,+7,
Uslj,y 277 Ulgas 22 7

Figure 6.5 Generalized three-port oscillator circuits.
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Ilml _ + YzY3 k. - U _ le —k,yc
4 o . -
Us|: L+4 ' Us, Tt

Let us consider the circuit of the oscillator as a parallel connection of two
two-port networks: active element (AE) and feedback circuit (FB) [the division is
shown in Figure 6.5(b) by a dashed line]. Let us assume that due to the filtering
properties of the FB circuit, the voltages in the circuit are close to sinusoidal. Hav-
ing chosen as a reference the resonant frequencies of the oscillatory system w, or
close to it, we write

u(t)= RelUe™, u ()= ReU., e

where U =Ue®and U., = U,e’® are the complex envelope of voltages.

This assumption allows us to characterize the AE by the averaged first har-
monic Y-parameters, which are generally complex and nonlinear:

Ln=Y,U+Y,Us, Iau=Y,U+Y,Ux (6.44)

Having entered currents I', and I',, flowing in an FB circuit, and having deter-
mined the Y-parameters, we obtain:

. . . .

I, =y U-kyUs, I, ==ky U+, +k 'y )Us (6.45)

(_Jom‘t?ining equations (6.44) and (6.45) in pairs and taking into account that
In+I',=0 and To+I',, =0, we write in the symbolical form the system of ab-
breviated equations determining the influence of voltages U and U, on oscilla-
tory system:

Us = N(E,U)U (6.463)
Y(E,U)U.. =Y, (p)U. (6.46b)

Here: N=-1/k,= U s/ U is a function opposite to the FB factor,
N(E,U)=~1/k, ==Y, +Y) (¥, -k y,), (6.47)

Y(E,U) is the equivalent output admittance of the oscillator referred to
points of connection of the oscillatory system,
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(Y, -k y )Y, ~ky,)

Y(EU)= Y, +v
11 o

~Y, —ky., (6.48)

Y. (p) is the abbreviated admittance of the oscillatory system at break on
an AE input, and
p = d/dt is the differential operator applied to complex signal envelopes.

In (6.46) it is shown that the nonlinear functions NV and Y depend on the ampli-
tude of the input voltage U and on the bias voltage E. This assumption is adequate
for the so-called understressed mode [4], when the influence of the collector volt-
age and the Y-parameters of the transistor on the first harmonic can be neglected.

The system (6.46) describes processes in the fixed-bias oscillator (£ = E,;, =
const). These equations are complex, corresponding actually to four differential
equations, the solution of which 1s quite difficult. However, for many practical
oscillator circuits it is possible with the correct choice of common and input elec-
trodes to make the transition from the practical circuit to one with an ideal trans-
former while achieving independence of function N from p. Then the two equa-
tions following from (6.46a), becoime algebraic, simplifying the study.

If we neglect the nonlinearity of input admittance Y}, and admittance of retun
reaction Y, of the active element (1.e., consider kg, as constant), (6.46a) is reduced
to trivial form and it can be ignored in the analysis. This case is equivalent to rep-
resentation of the AE by an inertial one-port network.

If automatic bias is used in the oscillator, (6.46) should be supplemented by
the abbreviated equation for the autobias circuit, which can be found from Fig-
ure 6.6, where it is assumed that the autobias circuit as well as in the input elec-
trode of AE are in the common electrode circuit:

E+1m0/Yin‘ p)+ IcomO/Ycom(p): Einit (649)

where: 1,0 and I, are constant components of currents of input and common
electrodes,
E,.; is the voltage of the external bias source, and
Y..(p) and Y,,,.( p) are symbolical admittances of the autobias circuits.

Lno

AE

Yin(P)

Eexl

Yeom(P)

Figure 6.6 Oscillator circuit with autobias.
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In considering (6.49) as with the abbreviated one, it is necessary to interpret the
abbreviation of admittance Y;,(p) and Y,,.(p) near “zero” frequency (i.e., to con-
sider p as the differential operator applied to constant components of signals).

Equations (6.46) and (6.49) form a system of general abbreviated equations
describing in the single-frequency approach processes in the anisochronous oscil-
lator with a complicated oscillatory system and automatic bias circuits.

6.4.2  Stationary Modes of the Oscillator

To calculate the stationary modes of the oscillator, it is necessary in the abbrevi-
ated equations (6.46) and (6.49) to put p =jA, where A = ® —y:

N(E, U =U, (6.50a)
Y(E,U)=Y, (/) (6.50b)
E+ IinO /Yin (0) + IcomO/YcomO(O) = Eim't (6'5 l)

Equation (6.50b) can be divided in two, having shared the real and imaginary
parts:

G(E,U)=Y,(\), (6.52a)
B(E,U)=Y,(\), (6.52b)

where G = ReY, B = ImY, 1,.(A) = Re(jA), Y;(A) = Im(jA). From (6.52b), we can
see that generally B # 0, and it is impossible to determine the change of oscillation
frequency A irrespective of amplitude U and bias voltage E (anisochronity) that
was possible in the analysis of oscillators using electronic lamps. For this reason,
oscillators with inertial AE are called anisochronous.

Four equations of a stationary mode (6.50a), (6.51), (6.52a), and (6.52b) de-
termine four unknown parameters: U, E, A, and Uy;. Note that (6.51) and (6.52) do
not depend upon Uy, and hence it is possible at first from these equations to find
U, E, and A, and then from (6.50a) to determine Uy,. Therefore, the stationary state
of the oscillator is completely determined by a point in three-dimensional phase
space U, E, and A, and (6.51), (6.52) establish surfaces crossed in points of a sta-
tionary mode.

Graphic methods are often applied for a solution to the equations. Let us as-
sume at first that in the oscillator a fixed bias is used (E = E,,;,). Then it is neces-
sary to solve simultaneously the equations (6.52) for E = const:

GU)=Y.,}), BU)=Y,(}) (6.53)
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We see that even in this elementary case for the isochronous oscillator it is impos-
sible to apply the approach of the oscillatory characteristics, as the right parts of
the equations (6.53) depend on A. However, the system (6.53) can be solved by the
method of hodographs. For this purpose on a plane B, G we can plot the hodo-
graphs of equivalent admittance of the oscillator using (6.19b)

O(p,8)Us "™ =5 P(p,8) Ix /™"

and of the oscillatory system Y. The first, the hodograph of an active element, is
derivable from the equation Y(U) = G(U) + jB(U), where the oscillation ampli-
tude is considered as a parameter. The second hodograph can be plotted from the
equation Y (A) = Y,(L) + j¥;,(A) with parameter A. The points where the hodo-
graphs cross define stationary values of amplitude and frequency.

With automatic bias it is also possible to apply the method of hodographs,
having modified it a little. The hodograph of the oscillatory system remains the
same. The hodograph of the AE cin be plotted in this way: we set the amplitude U
from (6.51), find the appropriate value of E, and at these values we define compo-
nents G, B, belonging to the AE hodograph. By analogy to the dynamic oscillatory
characteristics it is possible to call this hodograph the dynamic hodograph of AE.

6.4.3  General Characteristic Equation of the Anisochronous Oscillator

The processes in oscillators are described by the nonlinear differential equations.
In accordance with Liapunov, it is possible to determine the local stability of sta-
tionary states based on the behavior of a linearized system. Let us proceed to
drawing up the linearized equations, considering for simplicity the case of single
autobias.

First, note the following. The stationary-state equations determine the value of
frequency change A; = @ — ®q Of oscillation frequency w,. relative to reference
frequency wg. Therefore, in a stationary state the phases ¢ and ¢ are linear func-
tions of time: @(f) = At + @, $(¢) = At + ¢ Thus, before linearization of the ab-
breviated equations it is also necessary to shift all operators by A = @y — o,
which is equivalent to abbreviation of admittance Y, p) concerning the frequency
of stationary oscillations. In this case, abbreviated equations (6.46) will take the
form:

U, =N(E,U)U (6.54a)
Y(E,U)s =Y, (p+2)Us (6.54b)

Together with (6.39) for the bias circuit these form the complete system of the
abbreviated equations of the oscillator. To find the equations of a stationary mode,
it is necessary to put in this system p = 0.
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Let us apply small increments to values determining a stationary mode:
U= i/+ E, E= qu"+ g, U, = lofm+n, and o= (p + o, where the circle above desig-
nates values of functions calculated at a stationary point. Let us now expand the
functions U,e’®, NU, YU,*, in Taylor series in the vicinity of a stationary mode
with small increments &, ¢, 1, and . Neglecting terms of second and higher or-
ders, we obtain:

U,e” =U, ej“’+ej‘l’(n+jU,; a)

WU = NU+ U e+ 0OV
oU OE
) o P ol . aY ° a)or o
YU:sej‘p:YUs:ejw‘*'ej‘p Yn+UsSEg+Us:5E—8+jYUssa

Substitution of these decompositions in the initial equations (6.54), (6.39) and
exclusion of the equations for a stationary mode give the system of linearized
equations:

e 3N
-Nl+nt-U—e=0 6.55a
n-N{1+n)§ E ( )

a R
Y-Y M+Us—E+Uss—e+ jUs(T-Y )a=0 6.55b
(Y-Y,m aU& EeT (Y-Y,)o (6.55b)
a}camo a}como
Y =0 6.55¢

where n = (U/N)(6N/aU).

The second equation is complex; therefore the system actually includes four
linearized equations relative to four variations. To simplify the problem, we will
exclude from the system a variation of the phase o. For this purpose we will divide
in the equation (6.55b), to look like: An + BE + Ce + jDo = 0, the real and imagi-
nary parts:

NRed+EReB+gReC-almD =0 (6.56)

nNimA+EImB+eImC+aReD =0 (6.57)
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Multiply (6.56) by ReD, (6.57) by ImD, and combine the resulting equations:
NRe(AD" )+ {Re(BD")+eRe(CD™) =0 (6.58)
Hereafter, the symbol ~ designates the conjugate complex.

Substituting in (6.58) the values of 4, B, C, and D from (6.55b), we obtain in-
stead of (6.57) and (6.58) a single linearized equation

U (Y/ 2v) , i/ss (8Y/ F)
Y-Y, Y-,

35

|Y-Y, P {n+ERe ™ =0 (6.59)

Let us note that it is impossible to reduce (6.59) using |Y — Y| , as in this case
the equation loses sense at p = 0, as Y —Y_(jA,;) =0, in accordance with

(6.50b).

Equations (6.55a), (6.59), and (6.55¢) describe the behavior of the linearized
system for small disturbances around the stationary mode. The operator p thus is
considered as a parameter of exponential solutions. The condition of nontrivial
solutions of system of linearized equations results in the general characteristic
equation:

1 —N(l+n) _U(8 N/ 3E)

2 . 3 ; y
55 i /
| Re UsOYIOU) . Us@YIE) | (6.60)

§5

i

Y. (p+j2) Y-Y (p+j2)

0 a}como/aU 61com0/ aE +Y (p)

com

Having expanded the determinant on elements of the first column and reduced
first line by N, we will write the characteristic equation as:

e R €TI0 U6N+RCU(59Y/6E)
‘Y—Ym y-y, NOE y-y, |=0 (661
‘a}m"'O/ ‘:U 6Icom()/aE+ Ycam (p)

Here Y, = Y(p + jA) and all derivatives are calculated at the point of a stationary
mode.
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With combined emitter and base autobias circuits, the third line of the charac-
teristic determinant becomes complicated and expression for it can be simply de-
rived from (6.49).

For oscillators with inertial one-port networks (Gunn diodes, klystrons, Reed
diodes) or for inertial two-port networks, the admittances Y7, and Y}, of which do
not depend on mode parameters, the characteristic equation turns out from (6.61)
at n =0 and ON/OE = 0. If the AE is also inertialess (electronic lamp, transistor at
low frequencies), the characteristic equation becomes even simpler - the complex
nonlinear function Y(U) is replaced by the real G(U).

The derivation of general abbreviated and characteristic equations is of inter-
est from two points of view. First, the procedure of derivation of the equations for
the specific circuits becomes much simpler, allowing us to concentrate attention
directly on the analysis of systems. Second, it is possible to reveal some general
properties of autooscillatory systems, which we will now describe.

6.4.4 Condition of Self-Excitation of Oscillators with Inertial Active
Elements

To obtain the conditions of self-excitation of oscillators (i.e., to study stability of
an initially stationary point, or point of rest), it is necessary in the characteristic
equation (6.61) to put A =0, U= 0, U,, = 0 and to take values of nonlinear func-
tions in the point U = 0. Having done this, we will write the result as the product of
two coefficients:

[a Leonal OE+Y,,, ( p)] {Y(©)-Y,(p)f =0 (6.62)

The first coefficient characterizes the stability of a point establishing a constant
current, and the second to excitation of oscillations with frequency ® = .
In transistor and lamp oscillators, the equation

ol /E+Y, (p)=0 (6.63)

as a rule, has roots with a negative real part, as usually 6} como/ OFE > 0, and
Yeom(p) is the symbolical admittance of the passive circuit. The situation in diode
oscillators is different. In this case, for excitation the working point of high-
frequency oscillations on the volt-ampere f:haracteristic of the AE always gets out
on a site with negative resistance, so 0l.mo/OE =08i/0u|_,=-1/R_<0. At the
same time the working point should be stable for a constant current. For example,
for the simple RC autobias circuit

Y..(p)=(1+pT,)/R,,
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where T, = ReomCeom the equation (6.63) takes the form:

pT. +1-(R

com o/ R)=0
From this it follows that the working point is stable with a constant current, if
R.om < R_, and is unstable if R.,, > R . Both these cases are shown in Figure 6.7. In
the second case (the straight line 2 in the figure) three steady-state regimes are
present and the working point at a falling site of the characteristic i(u) is unstable,
and the system, depending on the initial conditions, passes to one of two steady-
state conditions with a constant current. However, here di/0u > 0 and the opportu-
nity to excite oscillations (at least, softly) at high frequency vanishes.

The stability of a point of rest to excitation of high-frequency fluctuations is
determined by the following characteristic equation with order 2my,, where my, is
the order of symbolical admittance Y:

Y@ Y, (P ={Y10)- Y, (P} {Y(0) -, (p)} =0 (6.64)

As the polynomials with complex conjugate factors have complex conjugate roots,
the real parts of the roots of the equations ¥(0) — Y,(p) =0 and [Y(0) - Y:(p)] =0
coincide. Therefore, in the analysis of stability of a point of rest, it is possible to
proceed from the characteristic equation (6.64) with the real factors, to the com-
plex characteristic equation

Y(0)-Y,(p)=0 (6.65)

for which the order is less by two. It simplifies the analysis of self-excitation con-
ditions of the concrete circuits.

6.4.5  Order of the Characteristic Equation and the Sign of the Factor at
the Upper Derivative

For definition of the order of the characteristic equation we will open the charac-
teristic determinant (6.61), being the algebraic multinomial of p. The senior

0

Figure 6.7 Operating characteristic of the cscillator.
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member of the determinant is included in expression

A+mY,,, (DY, (p+ M) (6.66)

Recall that the order of symbolical admittance is equal to the maximal degree p of
its numerator or denominator. For oscillatory systems such as a parallel contour
forming quasi-sinusoidal signal of voltage, the degree of the numerator Y (p) is
greater than or equal to the degree of the denominator, and therefore the order of
admittance is equal to the degree of the numerator. The same applies to symbolical
admittances of autobias circuits.

Let us designate through my and m.,, the orders of the oscillatory system
and the autobias circuit. Then the order of the characteristic determinant (6.61) is
equal to 2mg + m,,. However, the order of the characteristic equation m is re-
duced by one, as the free member of the characteristic detenninqnt, which can be
obtained from (6.61) at p = 0, is identically equal to zero, as Y-Y, (jA)=0 in
accordance with (6.50b). Thus, m = 2my + m.,, — 1. It is obvious that with com-
bined autobias (where the autobias circuits are included in a common and an input
circuit) the order of the characteristic equation will increase and will be equal to
zms: + Meom + mi, — 1.

Let us consider how we can define the sign of factor gy in the upper term of
the characteristic equation. In accordance with (6.66), a, is equal to the product of
the coefficient (1 + n) in the upper term of the product Y.,.(p)|Ys(p + JAF. As
Y.om(p) and Y (p + jA) are the admittances of the passive circuits, all factors of
polynomials in the numerator and denominator of expressions for Y,(p) and
\Ye(p +J 7\)]2 are positive, and the sign of the factor a, agrees with the sign of the
efficient (1 + n). For stability factor 4, to be positive (1 + #) > 0. This condition is
a general condition of stability and is sometimes referred to as the condition of
singular stability. The violation of it results in occurrence of special unstable
modes such as stochastic relaxational automodulation of amplitude and frequency.
Similar modes are characteristic for any dynamic system described by the abbrevi-
ated equations, of which the factor in the upper derivative can pass through zero
with change of parameters.
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Chapter 7

Analysis of FM Systems Using Symbolical
Abbreviated Equations

Modern short-range radars, including those with autodynes, use frequency modula-
tion to increase the noise stability and reliability of operation, as has been noted in
the previous chapters. The analysis of autodynes is complicated and strictly speak-
ing we cannot apply the common radio engineering approach of symbolical abbre-
viated equations. Nor do quasi-static methods produce desirable conclusions, as
with the quasi-static approach we cannot investigate the dynamic properties of the
system, where the autodyne signal represents a particular variation of the station-
ary parameters.

There is also the problem of :xtending the method of symbolical abbreviated
equations to FM generators (i.e., to systems with variable parameters). This new
problem has not been examined carlier but will be carried out in this chapter.
Thus, the general equations of systems with constant parameters will be derived
again, as in Chapter 6, but in a more complex form applicable when diverse con-
trol signals (low-frequency, high-frequency asynchronous, high-frequency syn-
chronous, control, stabilizing, etc.) operate on the autodyne. The method of sym-
bolical abbreviated equations is then applied to FM autodynes. Examples of this
approach are given at the end of the chapter.

7.1 SYMBOLICAL ABBREVIATED EQUATIONS FOR
CONTROLLED SELF-OSCILLATORY SYSTEMS OF ANY KIND

A large amount of scientific and technical research has been devoted to analysis of
various self-oscillatory systems (S0S), beginning with the classic theory of oscilla-
tions and extended in many modem studies. Especially in short-range radar, the
constantly growing requirements for technical and operational characteristics of
SOS operation, emergence of new types of active microwave devices, new micro-
wave circuit design, intensive development and expansion of SOS functionality,
and development of new mode control facilities require consideration of qualita-
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tively new and significantly more complicated problems, demanding moderniza-~
tion of existing methods and development of new analysis methods.

The purpose of this chapter is the development of a general technique for
analysis of the stationary modes and transients for autodyne SRRs with the various
types of control signals that may be applied for diversified purposes.

In developing a general approach to analysis of multielement SRRs using
SOS, an important step is to develop a physical and mathematical model that de-
scribes the phenomena encountered in such systems. The authors have studied the
influence of signals of various types on the multipurpose SOS. Analysis of pub-
lished models and the authors’ operational experience have allowed them to de-
velop a generalized model of the multielement SRR, one structure of which is
shown in Figure 7.1.

The complex active element (CAE) of the SOS is shown in Figure 7.1 as a
multiport circuit. High-frequency CAE inputs and outputs designated from 1 to n
are connected (generally through an element with delay 7, to a selective system
(SS) that provides necessary signal filtration, and also to the high-frequency (HF)

HF
outputs _ | Transceiver
of self-oscillating | antenna
system
:_ Self-oscillating system -:
1
Controlled } Complex > HF |
power =1  active 2_, infout Tn
source | element |~ — — of complex active |
l o element '
l T
12| Im |
| XER ‘ |
LF i LF
outputs infout _ Additional Selective l
of self-oscillating of complex active feedback circuits system | |
system | element 7 |
|
I I AN 4+ —J
:  d Y :_
LF HF
control signals I Tran e | control signals
@ " R 1)
Inputs of inputs of
LF HF
control signals control signals

Figure 7.1 Structure of one cascade generalized model for a multielement short-range radar system.
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output to the transceiver antenna. HF control signals from the appropriate inputs
are applied to the HF inputs of the CAE and to the signal reflected into the antenna
by the target. Low-frequency (LF) CAE inputs and outputs, marked 1 to m, con-
nect to the low-frequency radar outputs. LF control signals (e.g., modulations,
stabilization, control, etc.) are applied to the LF CAE inputs and to the SS.

Additional feedback (AFB) circuits that are often used to give specific proper-
ties to the SOS are shown in Figure 7.1. The LF and HF signals generally may be
inputs to these circuits, and output. signals of the AFB circuits may be applied both
to LF and HF CAE inputs, through elements with delay 1. The controlled power
supply providing necessary voltages to the CAE and to separate SS elements (e.g.,
varicaps, varactors, or pin-diodes) is controlled by LF control signals. Multi-
element SRRs may use various configurations of the cascades shown in Figure 7.1,
connected through HF and LF inputs and outputs or through space.

As the CAE in the circuit we may use inertialess and inertial double-pole ac-
tive elements, which include tunnel diodes, avalanche diodes, Gunn diodes, nega-
trons (artificially created elements with negative resistance or conductivity) and
their combinations, two-port networks (bipolar and field-effect transistors, transis-
tor-diode circuits), and also compound amplifying devices (amplifiers of various
types, multiport microcircuits and microassemblies, and also complex combina-
tions of active and passive elements, including those using various physical princi-
ples of operation).

Oscillatory circuits in the system of Figure 7.1 may also be varied: concen-
trated and distributed elements; operating in reflection or transmission modes (or
combined); with constant or controlled parameters; with selective circuit structures
that generate the quasi-sinusoidality of the necessary (input and output) voltages
or currents (so-called Y, H, Z, and G-circuits [1]); with special structures providing
the necessary functioning of multielement SRRs (e.g., for creation of the self-
oscillatory autodyne phased anternna array).

The structure of the CAE circuit also may vary depending on the task re-
quired. It may be a system to maintain constant oscillation amplitude, to maintain
modulation characteristic linearity for the frequency-controlled generator, or to
stabilize the autodyne detector putential; a phase-locked loop (PLL) system for
frequency trim or automatic adjustment of phase, a system for frequency restora-
tion on the received monopulse, or a device for expansion of stability zones or the
synchronism band of the SOS.

The model presented is gencral enough to allow theoretical study of various
SRRs that generate and process radio signals on the basis of self-oscillatory sys-
tems. The main preconditions of the generalized SOS analysis are the following:

e The oscillatory system has a large Q-factor (for the chosen voltage or

current), that allows using the method of slowly changing amplitudes;

o  The inertial CAE properties do not vary in the SS passband (i.e., the CAE

does not contain within its structure any frequency-selective parts tuned
near the operating frequency).
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-t o

Al

control

Yes(jo) Ve

Figure 7.2 Self-oscillatory system on a three-input active element with an HF control circuit.

These assumptions apply in the majority of practical cases. We will consider
again the case in which the operating frequency is unmodulated and the SOS con-
tains a three-input CAE (Figure 7.2) with an HF control circuit. The following
circuit parameters are designated: the complex amplitudes of the first harmonics of
CAE voltages and currents, the current bearing the information from a reflected
signal I.g, and an external synchrosignal current I, The oscillatory system in the
case studied is used in the transmission mode: it is included between output 2 and
input 1 electrodes of the CAE and is characterized, as usual, by its coupling factor
ky, the conductivity of dispersion y,, and the SS output conductivity Y. For con-
creteness we will consider that the oscillatory system provides a parallel reso-
nance at the operating frequency (i.e., it forms, from the nonsinusoidal output cur-
rent i, the sine wave voltages u, and u,).

We can obtain from this diagram the following subsystems: (a) the usual
autodyne circuit, synchronized by an external signal, by excluding from the circuit
the HF control block and input 3 of the CAE; (b) the circuit of an independent
(unsynchronized) autodyne, by setting I, = 0; or (c) the usual oscillator circuit, by
setting I, = 0 and I.q = 0.

Let us represent the CAE by a system of complex parameters averaged at the
first harmonic, as in Chapter 6:

. 3
L=Y1,U, (7.1)
j=1

where Y;; are complex functions of amplitudes and phases of CAE input voltages.
The SS and HF circuits are described by the following equations:

—h =y, Ui~ky,U, ~5=Y,U:+Y,,Us a2

~D=D =y, Ut (Y, +k2y,Ust Lo |12 =Y, Us+Y,,Us
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where Y5, Y23, Y33, and Y3, are parameters of the HF control circuit. Current
sources I.q and /., are also referred to the oscillatory system and the HF control
circuit.

Excluding the currents from (7.1) and (7.2) and passing from complex ampli-
tudes to amplitudes and phases of signals, we obtain three complex equations:

Ule/m = Nl (UI’UZ’ U}’Iext’(pad))Ulejm’
Uzejm =N3 (UI,UZ,U3,Im,(p,¢)U3e’Q"“, (7.3)

Y (U Uy Uy Loy 0. 0) U = Ygg (p+ AU, +1,

where N|, N and Y are nonlinear complex functions of amplitudes and phases, Q
1s the frequency difference of a synchrosignal, and Y is a complex function of the
differential operator p. If it is necessary to use an automatic bias circuit for main-
tenance of the necessary mode cf the amplifying devices included in CAE, we
must add to (7.3) the differential equation for an autobias circuit having the fol-
lowing structure:

Y (p)E+J,(U,U,,E)=E_ /R, (7.4)
where Y,{(p) is the symbolical admittance of the autobias circuit, £ and Ej,;, are the
resulting and initial bias voltages, and J, is the nonlinear direct current flowing
through the active part R;; of the admittance. In the presence of autobias the func-
tions N, N;, and Y in (7.3) will depend on the bias voltage E. The system (7.3),
(7.4) forms the seven real nonlinear differential equations describing the processes
i the self-oscillatory system to be analyzed. For p = 0 the general equations of
SOS stationary modes follow from (7.3).

Local stability of single-frequency modes is determined by the general charac-
teristic equation that may be obtained from (7.3) and (7.4) through linearization.
We will omit these calculations as they are similar to those used in Chapter 6. So,
for the synchronized generator with an HF control circuit without autobias, the
characteristic equation is of the form:

A=RQ,~PQ =0 (1.5)

where A is a characteristic determuant of the linearized equation system.

On the basis of the described approach, we have obtained the general abbrevi-
ated and characteristic equations 1or the nonisochronous autonomous oscillator [2]
and the synchronized oscillator {3], and the general abbreviated and linearized
equations for transistor autodynes [4] of various types (Y, H, Z, and G). Using
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these equations, many concrete problems in the analysis, calculation, and design of
various autodyne self-oscillatory systems for SRR can be solved.

72 METHOD OF SYMBOLICAL ABBREVIATED EQUATIONS FOR
FM SYSTEMS

Let us proceed to construction of a mathematical model of the self-oscillatory sys-
tem with time-varying parameters, for which the method of the symbolical abbre-
viated equations cannot be directly used. The appeal of this method for radio engi-
neers and science officers is obvious, as it allows them to use the classical ap-
proach of nonlinear oscillation theory, operating with complex amplitudes familiar
to the engineer. To extend the method of symbolical abbreviated equations to FM
generators and autodynes, with the objective of simplifying the calculations and
discussions, we will consider an equivalent circuit of FM self-oscillatory system,
Figure 7.3, containing a negatron (a two-pole active network with a nonlinear
characteristic i(u), where i and u are time signals of current and voltage). The
symbolical conductivity Ys¢{ jo,u) of the oscillatory system depends not only upon
the differential operator jo but also upon a modulation parameter n (or set of pa-
rameters) and has a polynomial form:

Y (jo,w) = R(jo,n)/ Q(jo, 1) (7.6)
The full differential equation of the FM generator will become
R(jo,n)u(®) = Q(jo,n)i() 7.7

Let us now perform truncation of (7.7) in general aspect. For this purpose we
represent the required signals in a quasi-harmonic form:

u(t) = U exp(j [ @, dt) , i(t) = T exp(j [ w,d) (71.8)
()]
1 |
Complex 8§ =S| moduation
active u ;
element l Yes(io,p) [ L o
{ ]

Figure 7.3 Equivalent circuit of an FM self-oscillatory system on a two-pole negatron.
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where U =Uexp(jo), I = [ exp(/¢) are complex amplitudes of signals and wgs is
the modulated circuit frequency. Now (7.7) will become:

Rjo, W)U exp(j [ o,dr) = Qjo.w) T exp(j [ 0,d1) (7.9)

Let us now expand (7.9) polynomials R and Q of the current frequency of or-
der / and » in a Taylor series:

RGjo.w) =Y a, (o) , 0ow =83 B, (o)  (7.10)

Here it should be noted that factors of polynomial decomposition in series o, and
B may depend on the parameter 1, depending on time according to the modula-
tion type. It is also taken into account that, for the usual oscillatory systems pro-
viding a parallel resonance near the working frequency, we may assume in the
denominator of the symbolical polynomial Ysg(jeo,u) that the attenuation S is a
small parameter of the problem. Now we will rewrite (7.9) as:

[exp(j_[wssdf) 22( )[(1“’ o« U][(Jm)m” ]

m=0 i=0

- 8[exp( [, t) |3 5 im)[( jo) B, }}[( jo) ™ o]

m=0 i=0

(7.11)

Here the operators jo act only on those time functions that appear with them in
square brackets.
Equation (7.11) is a complex and difficult equation, but it is possible to carry

out in it a reduction of the rapidly oscillating members exp( J j wssdtj as they are

already removed from under the nperator p. This will simplify a problem, but will
not result in the abbreviated equations because for truncation it is necessary to
carry out the sorting of members according to their order of smallness, for the
measure of which we will use the attenuation & of the oscillatory system. Consider-
ing as usual that changes of amplitude and phase of oscillations during the period
are small, as well as the rate of frequency modulation, we will sort terms of (7.11)
in order of smallness, having first expanded a., and f8,, in MacLaurin series in &:

@) =Y oy (W8, By () = Y B, (5
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After sorting the terms of (7.11) in order of smallness and rejection of high-
order terms, we obtain the required abbreviated differential equations of the first
approximation:

day, U+ J%o Ubo+ J8® o U+ jouy, U(joro) +(jma,o U]
(7.12)

+2jo, (ju)oczo UJ =8By I+ jO®B,0 I

Recall that jo is the differential operator that operates on slowly varying complex
amplitudes of signals U and I (i.e., on their amplitudes U, I, and phases ¢,$), as
well as on the frequency difference Aw and factors o; and B that vary with modu-
lation frequency. Equation (7.12) is complex and therefore its real and imaginary
parts can be divided into two real equations. Having added this system to the equa-
tions connecting amplitude and phase of the first harmonic of current and voltage
U (the connection being defined by the active clement used in the generator), we
will obtain two real equations describing the transients of amplitude U and phase ¢
of frequency-modulated oscillations.

In case (7.12) transforms into an identity such as 0 = 0, this means that the
equations of the first approximation do not describe the practical case and it is
necessary to complicate the problem, by using equations including the second ap-
proximation, whose members have the second order of smallness in attenuation 8.
These equations follow from (7.11), taking into account terms of the second order,
and take the form:

804, U Ao+ 8%, U o0, + jdot,, U johw)+ jouy, ('J[( jo) Aco:l
+5(j600(.” Uj + 2jA(0(jCO(120 U) +2j0)05(j0)a21 (}J+3(jcoa3o (})(ijco)

+(jo) (azo U) +3jo {(jm)2 Oy U:‘

=8By, I+ jOP,Aw I+ joB,, I(joAw) +8(j0)Bw I) +2jd0, (jo)ﬁzo I)
(7.13)

Here also the differential operator jo acts only on those slowly varying functions
of time that are in the bracket with the operator.

Thus, the algorithm for using this procedure to obtain the abbreviated SOS
equations for systems with modulated parameters is the following. We write the
expression for the symbolical admittance Ygg of the oscillatory system, allocate the
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polynomials of its numerator and denominator, and determine the order of small-
ness of the terms. We then determine the expressions for the factors o9, 0oy, 041,
029, Poo, Pio and substitute them in (7.12). Further substituting in (7.12), as we did
for systems with constant parameters, expressions for the complex amplitudes of
voltage and current, we perform differentiation and separation of the real and
imaginary parts, writing the abbreviated equations in the obvious form. If (7.12)
then yields an identity (as, for example, in the case of a coupled-circuit oscillatory
system with nearly equal individual frequencies), we must use equations of the
second approximation (7.13) for analysis.

The proposed approach to the analysis of the frequency-modulated self-
oscillatory systems is expanded in our works to more complex cases, when, in ad-
dition to a low-frequency (modulating) influence on the oscillatory system, other
types of influence [5] apply as well.

Let us consider some concrete examples of deriving the abbreviated equations
for FM systems.

73 DIFFERENTIAL EQUATIONS OF SOME FM SYSTEMS

In this section we will obtain the full and abbreviated differential equations of ele-
mentary frequency-modulated systems.

7.3.1 Differential Equations of a Parallel Conservative LC Circuit with
Variable Capacitance and an Active Two-Pole

The basic circuit of the system is shown in Figure 7.4(a). The nonlinear element is
represented as a source of current i(x). Equating the sum of the currents flowing
into unit “a” of the circuit, we obtiin the integral-differential equation:

.
lru[ﬂ cle gt k
e 7T
lcl iLl lnl
a) b)

Figure 7.4 Basic conservative (a) and dissipative (b) tuned circuits with variable capacity and an
active two-pole.
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iw)=1i, +i, =% | u(t)dt+g—t-(Cu) (7.14)

where it is assumed that the capacitance C(¢f) depends upon a time for realization
of frequency modulation.
Differentiating (7.4) with respect to time

d . 1  d
i@ =Tur—5(Cu) (7.15)

We take the second derivative:

du dc du _dudC d*C
dz( =G Hdtj* (dtﬂ ‘@ raata 79

Substituting (7.16) in (7.15), and taking into account that d:s:l) jl % , we ob-
U
tain the full differential equation of the system:
2 2 .
coft e (1L ACY ddi oy
dt dt \L dt du dt

If the frequency of the system is not modulated (i.e., c(¢f) = const), this equa-
tion is reduced to the usual conservative equation of a tuned circuit with parallel
nonlinearity i(f):

u
—t—u-———=0 7.18
datt L dt dt (7.18)

Let us derive (7.17) by the symbolical method. We enter the symbolical conductiv-
ity of the circuit

(7.19)

Substituting (7.19) in the symbolical equation of the tuned circuit i = Yss(jo)u, we

obtain
1+|(jo*)LC
i) = Mu (7.20)
JjoL
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Replacing jo with the differential operator d/dt, we obtain the required equation

di du d?
L%, 2 (Lc 721
T g ) (7.21)

which accurately coincides with (7.17) if we take into account the necessity of
differentiation of both functions of time: u(¢) and C(?).

7.3.2 Differential Equations of a Parallel Dissipative LC Circuit with
Variable Capacitance and an Active Two-Pole

This basic circuit is shown in Figure 7.4(b). Operating as in the previous case, we
find the full differential equation of the dissipative circuit with nonlinearity and
FM:

C(t)du dCdu{l ch di 1. du

— —_———)— 7.22
dt dt L df (u R)dt ( )

If the frequency is not modulated (i.e., C(¢) = const), the equation is reduced to the
usual dissipative equation of a circuit with parallel nonlinearity i(x):

2
Cd u 1 _(ﬂ__l_)ﬂ (7.23)
dr’ L dt R dt

Let us derive (7.23) by the symbolical method. We enter symbolical conduc-
tivity of the circuit

, R+ joL+[(jo)’ LCR]
Y, =—+—+joC= - (7.24)
joL R JoLR
Substituting (7.24) in the symbolical equation i = Yg(jo)u, we obtain
R+ jol +[( jo? )LCR}
i(u)=— - u (7.25)
JoLR

Replacing here jo with the differential operator d/dt yields the required equation:

. 2
Lﬂgﬁ:'u+£-d—u+ a LCu (7.26)
du dt R dr dr
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In transformations it will again be necessary to take into account the differentiation
of both functions of time u(¢) and C(¢).

It is clear that the full differential equations derived in this section apply to
cases of independent tuned circuits, when the external current i is zero, and to self-
oscillatory systems in which the external current i is developed by an active ele-
ment and compensates, in the mode of stationary oscillations, for the losses in the
oscillatory circuit and the generator load.

7.4 ABBREVIATED DIFFERENTIAL EQUATIONS OF SINGLE-
TUNED OSCILLATORS WITH SINUSOIDAL FM

We will consider a procedure for derivation of the abbreviated differential equa-
tions of single-tuned oscillators. The basic circuit of such a generator at high fre-
quency is shown in Figure 7.5. The active element is assumed for concreteness to
be a bipolar transistor, which for simplicity is considered to be an inertialess de-
vice with large input resistance at the operating frequency. Under the influence of
control signal u(¢) the transistor develops a current i(f) flowing into the tuned cir-
cuit and compensating for the common losses. The control voltage u is coupled to
the output ugs through the feedback factor kg = —u/ugs, determined by the circuit
parameters.

We will consider that ohmic losses of the circuit are concentrated in induct-
ances L; and L, and that they are proportional to those inductances: r,/r = Ly/L.
Sinusoidal modulation of frequency described by

(1) =1/ Ly Croa(8) = JLC() = 0, (1 +£cOS Q1) (7.27)

is provided with modulation of circuit capacitance

C(t)=C,(1-2ecosQ, 1) (7.28)
L4 L g
R
( S t
u(t) 7c(t) “ Uselt)
N r

Figure 7.5 Basic circuit of the single-tuned transistor generator controlled in frequency.
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Now we may write a system of full differential equations of the problem from
which (7.22) follows. This equation of the second order is not especially complex
and can be reduced directly to abbreviated equations. The procedure is quite tedi-
ous for more complex oscillatory systems and those with automatic bias, where
execution of the direct truncation procedure without mistakes is very difficult.
Therefore, we use the approach of simple derivation of the abbreviation equations
developed in this chapter, and we will describe an example in detail.

We write the symbolical admittance of the system, as shown in the example of
Section 7.3.2, in the following form:

2
Jolp [ Jjo 2
14| 7= |5+ — LC
R+jcoL+(jm)2LCR_ +(m0JR (moj (mo)

Y (Jo,u) =
s (Joos 1) oLk Jo
®, P
- . 2
l+£—'@]6+ 19] (1-2ecosQ, ¢)
o, ‘\(DO
= 7 .
[Eaaby:
1\\0)0

Here, oy = 1/LC, = const is the constant component of the oscillation frequency
around which the frequency is modulated according to (7.27), jo is the differential
operator, and p = wol is the characteristic impedance of the circuit.

Now we determine the decomposition factors in Taylor series in @ for the
numerator and denominator of the symbolical admittance Y(jo,p):

) 1-2ecosQ2 ¢ R
aozl’al ::8_’03:_—(;)_2——’6020’ B|=Z)—
0 0 0

In the case at hand only one factor a; depends on time.
We now express the decomposition factors of all coefficients in a Taylor se-
ries in .

1
oy =10y =0, 0, =0, a;, =—,
®,
1-2ecos2, ¢ R
Gy = 2 s B =0, Bo=—
®, ®,

Now we write the abbreviated equation for complex amplitudes:
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j8f]+]1 2acosttU( coAm)
®
° (7.29)
. . 1-2gcosQY ¢ * R
+2j@,| jo————"U | = jéow, —1
0 (00
Substituting Ao = &(¢) — @y = emecosQ,,t, we obtain:
. 2 . .
U+ I_%EU(JWDO cosQ t)+——8(](o[l 2ec0sQ t]Uj RI (7.30)
0

Now enter a circuit time constant T = 2/, and rewrite (7.30) as:

s L 1-2 ¢t . .
U+T—8czosiU(j(DSCOSth)+T(j0)[1-—2SCOSth]U]=R1 (7.3

Substituting the expressions for complex amplitudes U =Ue’® and [ = le’®
(taking into account that the active element is inertialess), we obtain

. - Q .
Ue” +T1—ﬂs—’"taUe"" icosttJ
2 dt
4 (7.32)
+ T[[Z} [1-2ecosQ, t]Ue™ ) = Rle’®

Differentiating, we obtain:

] 1-2ecosQ, ¢t j
U® 41— e /? (-, sin Q1)
2
. . : . (7.33)
+T {[-259,,, $in Qyp,tUe/ ? +{1-2¢ cos th](%ef% jUe!® ‘fi—‘f)} = RI’®

Dividing by the exponential factor yields

1-
U +T——28°2°SQ'"’ eU(-Q, sinQ,f)

; (7.34)
T[[—zaQ sinQ,t]U +[1-2ecosQ t]( +jU d‘tpn RI

Now separate the real and imaginary parts to obtain
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1-2ecosQ, ¢
2 (7.35)
—2eQ TUsinQ, T =RI{U)

T(1- 2s:cos§2mt)9,;’(i +U ~eQ2, TUsinQ) ¢
t

TU(I - zscostt)-‘gE =0 (7.36)

These are the required abbreviated equations of the FM generator. In the absence
of FM (i.e., for € = 0) these equations are reduced to those of Chapter 6. From
(7.36) it follows that do/dt = 0 (1.e., the steady-state and transient frequency is
exactly equal to the modulated frequency of the circuit). It is clear that, within the
framework of the first approximation, the frequency with an inertialess active ele-
ment does not depend on amplitude.

In considering these equations it can be noted that ¢ is small, and it is possible
to neglect the terms with € in comparison with 1 and terms with €” in comparison
with e. Then (7.35) will become

Ta;—ltj»%»U(l - %stTsiant) =RIU) (7.37)

This is the equation that should be solved in considering parasitic amplitude
modulation of the generator.

It is possible to show that for all single-tuned FM oscillators the structure of
the abbreviated equation for amplitude will resemble (7.37), but the factor in the
term £, 7sinQ),¢t will vary. For a circuit with transformer feedback it is —5/2,
from (7.37). For a circuit with an inductive three-port, considered in Chapter 8, the
factor is —3/2. For other single-tuned FM oscillator circuits (for example, for a
capacitor three-port), this multiplier will have other values (see Chapter 8).

1.5 PARASITIC AMPLITUDE MODULATION IN AUTODYNES FOR
VARIOUS TYPES OF FREQUENCY MODULATION

Let the oscillation frequency of the autodyne now be modulated under the any law
using a variable capacitance:

=1/ (I C.. () =JLC(®) = o, [(1+&y(t)) (7.38)

The capacitance for this purpose varies as C(f) = Co[1 + PF(#)]. Let us find the
connection between these relationships:
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1 1
0)(t)=—~—-— or
JIC, Ji+BF () (7.39)

1 2
m =[1+&y(5)]

Considering small modulation factors << 1, ¢ << 1, then we find that
1 - BF(H) =~ 1+ 2ey(d), or

BF(t) = ~2ey(r) (7.40)

Thus, if oscillation frequency is modulated according to (7.38), modulation of
circuit capacitance has the form

C(1) = C,[1+BF(®)] = C,[1 - 2ey(¢)] (7.41)

The symbolical admittance in this case will be obtained according to Sec-
tion 7.4, but instead of the multiplier (1 — 2ecosQ,,f) in the numerator there will
appear as the multiplier [1 — 2ey(s)]. As earlier, we will express decomposition
factors in a Taylor series of the numerator and denominator of the symbolical ad-
mittance:

) 1-2¢gy R
a, =1, O = 0y = ——;i—) Bo =0, By =—
0 0 0

Expressing the decomposition coefficients of all factors in Taylor series in d:

w0 =L oy =0, 0y =0, 0y =—

0)0
1-2¢ey(¢ R

Qg = @’ ( ) s B =0, Byo =
0 ®,

we obtain the abbreviated equation for complex amplitudes
U+ jﬂlU( joro)
®

° (7.42)
260) ] jom, R 7
coo

0

+2j0)0[j0)

Substituting A® = o(f) - ©0 = cagy(f), we obtain
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Ut EF_YLQL}[ joeo v(6)]+ 25 ( jo[t- 2£y(t)](./j —RI  (143)

2
daw, @,

Substituting now the expressions for complex amplitudes U =Ue’® and
I = Ie’® (here it is assumed that the active element is inertialess), and differentiat-
ing, we find:

Ue™ +T 1-2ey(1) eUe”™ ‘ ﬂj
2 L dt
(7.44)

+T {—286—11 Uej°+[1—287(t)](d—Uej“’+ erfwfd—‘p) = Rl
dt dt dt

Dividing by the exponential multiplier and dividing the real and imaginary parts,
we have:

T(1—2sy[z])f@+U—eUTﬂl—_ﬁ(’—)
dt J dt 2 (7.45)
2etu Y =~ RIU)
dr
TU|I -2sy(t)]‘—2—‘tB =0 (7.46)

These are also the required abbreviated equations of the FM generator for
any type of frequency modulation. If the common case of small frequency devia-
tion (i.e., € << 1), (7.45) becomes:

dU 5 dy
T va-2er Y = RIU 7.47
” ( > dt) ) (7.47)

This is the equation that should be solved in considering parasitic amplitude
modulation (PAM) of the generator. As earlier, for all single-tuned FM oscillators
the structure of the abbreviated equations for amplitude will be resemble (7.47),
but the factor multiplying €7dy/dt will vary: for a circuit with a transformer feed-
back it is —5/2, and for the circuit with an inductive three-port it is —3/2.

Let us determine now the PAM signal for common types of frequency modu-
lation. Let the autodyne response with PAM be

U=U)+Npg )+, () (7.48)



168 Fundamentals of Short-Range FM Radar

where U, is the amplitude of the HF voltage of the autodyne at its operating point
(without PAM), n.4(¢) is the autodyne signal, and npu?) is the PAM signal. We
consider, as usual, that Npgs << Uy, Neg << Up. If the problem is to determine the
level of PAM signal in the absence of an autodyne response for different modula-
tion types y(¢), then at the usual PAM levels it is possible to make (7.47) a linear
one, having substituted (7.48) in it instead of U for n,y = 0:

T AL TG +nm,)(1—§sT dy
dt dt dt
4GO) (7.49)
= R[I(U,) +——Npau]

We rewrite this equation as:

7Y% 7 Mean U(l—zaTdyJ+an(l—§sTﬂ]
dt dt 2 d 27 dt

dG
=RI(U,) +R[Uo EL_]nPAM +GOnPAM]

and excluding from this the equation of the stationary mode, we obtain

dn 5 ..dy daG 5 dy
7 Mews _ 7% _Rly, +2uer?y
ar e 5 [ 0 qu ean } o

Neglecting the product 1p4€ as being of the second order, we have finally:

rfewn U0 4G o) (7.50)
& G, dU"
where
5 dy
() =2U,eT <L 7.51
® Sy UetT (7.51)

Equation (7.50) describes a PAM transient signal for a single-tuned autodyne
with any type of frequency modulation, determined through (7.51). The common
result of (7.50) has the form

Moy () = %e‘”f [ Dy, (7.52)
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7.5.1 Sine Wave Frequency Modulation

In this case y(f) = cos),,¢ and
5 .
() = > U,eQ,TsinQ t (7.53)

Now from (7.52) we obtain

N (1) = “% Upel,e " [¢'7 sinQ, tdr (7.54)
and from (7.54) we obtain, integrating by parts:

5 , .
Npay () = —EUOSQme""T je”‘ sinQ_tdt

m

= —%UOSQme"”T {e”‘ a (-cosQ, 1)+ T sinQ te''" + C} (7.55)
= -S—Uos{cos Q,t-Q,7 sinQ, ¢} +Ce™'”
2
where C is a constant of integration. Entering tan¥; = Q,, T we find

Npa () = % Use{cosQ, ¢t —tan ¥, sinQ 1} + Ce ™"

SU,ecos(€2,t ~¥)) (7.56)
2
2| LG (1)
G, oU

Thus, the PAM signal with sine wave modulation consists of an exponential
multiplier, describing a PAM signal transient, and a sine wave component with the
modulation frequency (actually a PAM signal). The phase shift of the PAM signal
is determined by the modulation frequency and the normalized time constant of the
circuit: ¥, = arctan(Q2,, 7). The PAM amplitude is proportional to the amplitude of
high-frequency oscillations and to the frequency modulation index, depending in a
complex way on the autodyne regime through the normalized derivative
(Uo/Gss)(6G/0U).

=Ce™'" 4
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7.5.2 Binary Frequency Modulation

The mathematical expression for binary frequency modulation is

m=m,,+i‘;—‘°i2 l_lsin(zk—l)gmz=m,, [l+er®)] (.57

k=1

where: &= A(O/(Dﬁ-,
sin(2k -1, ¢
¥(1) = ; Y
oy is the frequency of free oscillations,
Ao is the frequency deviation,
Q,, is the modulation frequency, and
k is a whole positive number.

Now the function ®(¢) in (7.51) becomes:

)

cp(t)_iU T‘;Y L

LAY TZcos(Zk nNQ, ¢ (7.58)
Substituting this in (7.54), we obtain the expression for PAM signal amplitude
with binary frequency modulation:

1°U O T‘Z cos[(2k -1t ¥

2
(U, 8G
\/(E—E) +{@k-p,T]

where the phase ¥y, ; is found from tan'¥y, ; = (2k — 1)Q,7T". So again the PAM
signal consists of the same exponential component and the enforced component
whose amplitude can be found from (7.59).

—/T

Npa () =Ce (7.59)

7.5.3 Frequency Modulation by an Asymmetrical Sawtooth

The mathematical expression for asymmetrical sawtooth frequency modulation is

k+1

o= (ofr + 2A_C0 Z ( 1) sin kat = O)fr [1 + £Y(t)] (760)

k+1
where y(f) =23 (ZD SR

T k=1 k
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Now the function ®(¢) in (7.51) becomes:

dy

cp(t)~—U el —- ::—U eQ T}:( "' cos kY, ¢ (7.61)

k=1

Substituting these expressions in (7.54), we obtain the expression for the ampli-
tude of the PAM signal with this type of frequency modulation:

cos|kQ -V
Moy (8) = Ce_”T + ‘U e} TZ( 1)’”‘ [ r: k]
k=1
D %6\ ke, 1T
G, oU

7.54 Frequency Modulation with a Symmetrical Sawtooth

(7.62)

where tan'¥', = kQ,,T.

The mathematical expression for symmetrical sawtooth frequency modulation is

m:m,,+8—A9k\;((2—k“i;—sm(2k DO, =o,[l+ey(n)]  (7.63)

(=D*"sin(2k -hQ, 1
where y(¢) = — Z’ k1)

Now function ®(¢) in (7.51) becomes:

dy _

2k -DQ ¢
(I)(t)—éU e &Y ! x1 €O8( )

AO m
, U QTZ( }) — (7.64)

Substituting these expressions in {7.54), we obtain the expression for the ampli-
tude of the PAM signal with this type of frequency modulation:

D cosfRE-DQ -
Npan () = Ce™'™ +§U eQ) TZ 1) 0 [( <, 2k—l]

e k-l iy a6 Y :
— | +12k-DOQ.T
22T kv

where, as before, tan'¥', | = 2k - H)Q,,T.

(7.65)
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Chapter 8

Output Voltage of a Frequency-Controlled
Oscillator

As a general rule, the amplitude of oscillator output varies with any frequency con-
trol, be it tuning discretely in time (switching), continuous tuning (frequency wob-
bling), or frequency modulation (FM). There are several reasons for dependence
of oscillator amplitude on frequency in the steady-state mode of operation. It can
occur because of change during tuning of the resonant resistance of the tuned cir-
cuit, of the tuned circuit insertion coefficient in the output circuit of the active
element, of the feedback factor, or of the transfer characteristic slope of the active
element, together with immediate 1nfluence on amplitude of the change of a reluc-
tance element parameter (a capacitor or an inductance, depending on which fre-
quency control element is used). By immediate influence we mean the influence on
the oscillation amplitude of the change in the reluctance element parameter other
than the variation of resonant resistance of a tuned circuit caused by this change,
and also by possible variations in some oscillators of the insertion coefficient of
the tuned circuit in the output circuit and by the feedback factor of the oscillator.

The purpose of this chapter is to estimate the degree of output amplitude
change for oscillators of different types, to define the influence of circuit parame-
ters, and to establish the relation between frequency and amplitude, allowing us to
estimate amplitude change with frequency control.

Steady-state regimes are considered separately for tuning discretely in time
(the complete frequency range of the oscillator in this case can be arbitrary), and
for steady-state regimes with FM (frequency deviation in this case is much less,
compared with the carrier frequency, than is typical of frequency modulation). It is
obvious that the results obtained during the investigation of the first case are valid
as well for rather slow frequency control that is continuous in time, as is typical for
swept oscillators.

To make clearer the physical reasons for the immediate influence of reluc-
tance element parameter changes on the amplitude of output voltage, which are
typical for oscillators with rapid frequency control, the parasitic amplitude modu-
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174 Fundamentals of Short-Range FM Radar

lation (PAM) accompanying FM in ideal (lossless) LC-tuned circuits is examined
separately.

8.1 CHANGE OF OUTPUT VOLTAGE FOR OSCILLATORS TUNED
DISCRETELY IN TIME

The oscillator designs that will be investigated can be reduced to the block dia-
gram shown in Figure 8.1. It contains, as usual, a tuned circuit, a nonlinear active
element, and a positive feedback circuit. The oscillations appear in the tuned load,
the active device gets energy from power supplies and converts it to energy of
oscillations compensating for losses in the load, and the feedback circuit drives the
active device. In the case of oscillators using a single-tuned circuit, the subject of
this chapter, the tuned load is usually an LC-tuned circuit.

The oscillator output voltage is usually obtained from the tuned load or an
element of it, and thus in the case of a real feedback factor k the voltage U on the
load is related to the amplitude of the driving voltage U, acting on the active de-
vice driving input, by U, = U/k. As the feedback factor is assumed to be constant,
the change of output voltage with tuning is equal to the change of amplitude U,

For simplicity of initial discussions we will assume that the active device of
the oscillator is inertialess. Then with a real feedback factor, according to (6.34),
the amplitude of the driving voltage U is described by the following abbreviated
equation:

dU
s =RLU)-U 8.1)

where T is the time constant of the tuned circuit, p = d/dt is the differentiation op-
erator, R is the so-called driving resistance, and /; is the amplitude of the first har-
monic of the active device output current, which depends nonlinearly upon the
amplitude U and the bias voltage F.

The bias voltage E is usually supplied by an external bias voltage source E;,;

i

-
Nonlinear active ¥ Selective
element U, system
u Feedback
‘ circuit

Figure 8.1 Block diagram of an oscillator.



Qutput Voltage of a Frequency-Controlled Oscillator 175

minus the voltage drop on an autobias resistor R.,,, due to the constant current I,
in the common electrode of the actwve device (base or emitter current of a bipolar
transistor, drain current of a field-effect transistor) (Figure 8.2). The voltage E is
given in this case by the following abbreviated equation:

7.k

com init
dt

_E-R_1I (8.2)

com ™ com(

where 7., = R.onC.om is the time constant of the autobias circuit, and C,,,, is the
capacitance of the autobias circuit.

In this section we consider variable-frequency oscillators that are tuned dis-
cretely in time. Thus, we are interested initially in steady-state regimes of opera-
tion (i.e., modes) in which the oscillator has been tuned to one of its intended fre-
quencies, after termination of the resulting transients.

Under steady conditions the values of U and E are, by definition, constant,
and consequently in (8.1) and (8.2) the left-hand parts are equal to zero. Hence,
these equations become:

RI(U)-U =0 (8.3)

E —~E-R,I

init com” com0 ~

0 8.4)

Analysis of low-frequency oscillators (i.e., those in which the inertial proper-
ties of the active device can be neglected) often uses approximations to the static
characteristics of currents by a piecewise-linear model. In this case, harmonic
analysis of electrode currents (i.e., definition of harmonics of a base frequency in
the current of each electrode) can be carried out quite easily and we obtain

L =Sn(O)U
I,= ScamYO(G)U

where S is the slope of the approximated characteristics of the output current, S,

AE

VE
Cam== || Ream -j:—em

Figure 8.2 Equivalent scheme of a bias circuit.
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is that of the current whose constant component flows through resistor R.,,,, ¥:(0)
and v,(8) are coefficients of decomposition of cosine impulses, and 0 is the cutoff
angle of both currents (we consider that both approximated characteristics come
from the same point of the abscissa and consequently the cutoff angles of both
currents are identical). Substituting these expressions for currents I, and L, in
(8.3) and (8.4), we find:

SRy,(8)-1=0 (8.5)

E

init E- Scom RcomUYO (e) =0 (86)

These equations allow us to estimate quantitatively the change of amplitude U
with tuning of @. Then from (8.6) and the expression cos & = —(E — E")/U, where
E' is the cutoff voltage of active device currents, we have

E,-E
— ( init ) (8'7)
S o ReomYo (8) —cos 6

com

Having determined at the given frequency o the cutoff angle 0 using the expres-
sion following from the equation (8.5)

Y,(8)=1/(SR) (8.8)

it is possible from (8.7) to calculate the amplitude U for any frequency in the tun-
ing range of the oscillator.

For interpretation of the results that will be obtained later, we normalize the
amplitude U and frequency @ to values Uygy and g0, applicable to the cutoff an-
gle 6 = 180°. From (8.7), it follows that

Eim' —-E
Ugo =

S R _+1

com™ “com
and consequently

L S omBeom +1 8.9)

U SR 1o(®)—cosB

From (8.8), we have

and
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o RO
¥, (€) Rio/ o) (8.10)

where R(1) is the driving resistance of the oscillator at ® = w59 and R(w/m,g) is
that for arbitrary o.

Let us consider expression (8.10) for a specific oscillator, namely one with
transformer feedback and a tuned circuit in the output circuit of the active device
(Figure 8.3). Here and in subsequent discussion of other oscillator types we will
assume, as is usually the case, that the loss resistance  of coils is much less than
their reactance oL in the range of the oscillator tuning (i.e., ¥ << ®L), and that for
all inductance coils the ratio /L has the same value (strictly speaking, » depends
on frequency). For an oscillator with transformer feedback coupling (Figure 8.3),
the coupling coefficient of the tuned circuit at the output of the active device is
pi=Li/L, where L = L, + L, is the total inductance of the tuned circuit, the charac-
teristic resistance of the tuned circuit is p = oL, and the resonant resistance of the
tuned circuit is Ry, = p2pQ(@) = (L./L)Q(w)w. Here, Qo) is the quality factor of
the tuned circuit, generally dependent on . As the feedback factor for this oscilla-
tor is k = M/L,, then for the driving resistance of the oscillator we have R = kR, =
(ML/L)Q(o)m. From this and (8.19), we can write in the general case for the os-
cillator with transformer feedback coupling

y, () - 2DLQC ) (8.11)

o/ O

where Q(1) is the quality factor of the tuned circuit for ® = w39 and Q(a/w1go) is
that for an arbitrary value of @. When the quality factor of the tuned circuit varies
so little over the tuning range that it can be considered constant, (8.11) becomes

1,(8) = 1/(0/ 05 (8.12)
M
AE N
L L, Lz
U,
u
r Ty T2
c

Figure 8.3 Tunable oscillator with a transformer feedback circuit.
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f2 L1
I y
o) ']
Figure 8.4 Main types of tunable oscillators using single-tuned circuits.

In Figure 8.4 the RF circuits of several variants of tunable single-tuned oscil-
lators are shown. The frequency controller is the variable element of the tuned
circuit. Note that the oscillators implemented using the circuits of Figure 8.4(c)
and 8.4(d) are not now practically applied. However, if there appear in the future
small-sized electrically controllable inductors capable of competing with varicaps,
they will certainly be used. One feature of oscillators as shown in Figure 8.4(a)
and (b) is that the normalized output voltage U, is proportional to the voltage act-
ing only on a fixed capacitance [Figure 8.4(b)] or on a constant inductance coil of
the tuned circuit [Figure 8.4(d)].

In Table 8.1 expressions are given for the coupling coefficient p; of the tuned
circuit in an active device output circuit having a characteristic resistance p and

Table 8.1

Calculation Formulas for Key Parameters of Controlled Generators for Circuits in Figure 8.4

Generator Figure Figure 8.4(b) Figure 8.4(c) Figure 8.4(d)
Circuit 8.4(a)
L c__1 c Lo
P 2 ¢ ClLo C L ~hae
P ol oL Y(oC) Y(eC)
L’'Q(o)w Aw) CO(w) 2 3
Rss ol 4 = L —C,Za) L*CO(w) o
E L < _owe __owe'
L C, O/ 05,)04, Q(m/wlw)m1303
R LLQ(mw (o) C(w) 3
- Ty Coo LLCQ(w)w
11 (e) Q(l)c‘)m) Q(l)(.l)3 Q(l)"o Q(l)(.\)J

Qo 0 ) O/ @) A/ 505 O/ 0,4 )00,5
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resonant resistance R, for the feedback factor k and for the oscillator driving re-
sistance R for all oscillator circuits shown in Figure 8.4. The relevant expressions
for v,(8), found on the basis of (8.10), are also shown.

Note that the expressions for v(0) for an oscillator with a transformer feed-
back coupling (Figure 8.3) coincide with those for an inductive three-point [Fig-
ure 8.4(a)]. This is because in both oscillators the frequency controller is the vari-
able capacitor, and the coefficients p, and & do not depend on frequency. In gen-
eral, any oscillator tuned by a variable capacitor with constant feedback factor,
having frequency dependence of us active device output tuned circuit coupling
coefficient similar to one of the oscillators shown in Figure 8.4, will have the same
formula for the coefficient of expansion y,(0).

In Figure 8.5(a-d) the normaltzed amplitude of the driving voltage U/Ug is
plotted as a function of the normalized frequency w/mg for oscillators imple-
mented by the circuits of Figure 8.4(a-d), respectively. The calculations were made
using (8.9) with expressions for y,£0) as shown in Table 8.1; thus, it was assumed
that the tuned circuit quality factors remained practically constant over the tuning
range [i.e., Q(w/®g9) = Q(1)]. From these curves we can see that the change of
normalized amplitude U/Uq, with oscillator tuning is reduced as the product
ScomRcom INCTEASES.

3
4 Ulssor
501
4,0}
3.0}
2.0+ 10
1,0} ScomRegrs= 00
/20 5
G 1 i :
06 08 1.0
a) )
4 4
U/Uis.y Ulullc'
L 50}
40}
3.0}
10
20} 5
senan: oC
1.0
O g WHOwe
o L L -~ 0 2 A 4 —
0.5 07 0.9 1,0 1.2 1.4
<) d)

Figure 8.5 Dependence of normalized osc:illation amplitude on normalized frequency for different
tunable oscillator circuits with different autobias parameters.
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8.2 PARASITIC AMPLITUDE MODULATION OF OSCILLATIONS
IN IDEAL SINGLE-TUNED CIRCUITS WITH MODULATION OF
THEIR NATURAL FREQUENCIES

In the previous section, the change of output voltage in different single-tuned os-
cillators was explored for discrete control of frequency in time (frequency tuning)
or slow continuous control of frequency (frequency wobbling). For short-range
radar the use of frequency modulated carriers is typical, and therefore the changes
of output voltage in those oscillators will be further explored, but for frequency
modulation (i.e., for the case in which the tuning can be rapid). In order to better
understand the reason for additional amplitude change with rapid tuning, the volt-
ages U, in ideal tuned circuits (i.e., without losses) shown in Figure 8.6 are con-
sidered, with modulation of their natural frequencies.

The tuned circuits shown in Figure 8.6 correspond to those in Figure 8.4 un-
der the assumption that all resistance losses # are equal to zero. Thus the voltage
Uss here is proportional to the output voltage of the corresponding oscillator in
Figure 8.4. It is obvious that the relative change of amplitude for voltage U, will
be identical to that previously derived.

We assume that the natural angular frequency o, =1/ JLC of the tuned cir-
cuits varies with modulation according to expression

o, =0 (1+ecosQ 1) (8.13)

where L and C are the total inductance and capacitance of the tuned circuit, My is
frequency in the absence of FM, ¢ is the peak frequency deviation, and €2,, is the
angular frequency of modulation. We will assume that requirements typical for
FM, g < 1, and Q,, < @ are observed. In ideal tuned circuits (Figure 8.6) with
frequency modulation the amplitude of the output voltage will vary [i.e., there will
be a parasitic amplitude modulation (PAM)]. It is possible to prove this by consid-~
ering the energy in such tuned circuits. We will show this for an example of the
circuit in Figure 8.6(a).

It is obvious that at frequency w, the energy in the tuned circuit can be ex-
pressed as Wy = CoU%¢/2, where C, is the circuit capacitance and Uy is the volt-
age on it in the absence of FM. An increase of tuned circuit resonant frequency by

| -] LT &7

a) b) ) d)

Figure 8.6 Different types of ideal variable-frequency oscillators.
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Awg; = ey increases of the energy of the tuned circuit by AWj,. The validity of
this assertion is most obvious by considering that the variable capacitor C, being
the modulator of frequency, represents a capacitor consisting of two plates, and
that the variation of its capacitance is carried out by the change of distance d be-
tween the plates. Then, a frequency increase by Awy; = em, requiring the reduc-
tion of capacitance by AC = 2eC,, is obtained by increasing the distance between
plates by Ad. It is obvious that some work 4 must be executed, corresponding to
the increase of energy AW,,. This operation is linked with the necessity, in separat-
ing the plates, of overcoming the attractive force effective between them. The total
energy of the tuned circuit W + AW, can be expressed as

C(1-28)U° (1-m)*/2=W,4(1-2e)(1+m)’

where Cy(l — 2¢) is the capacitance of the tuned circuit and U,o(1 + m) is the volt-
age on it, applicable at the greatest frequency oy = wo(1 + €). Using
w

150

+AW, =W (1-2e)(1+ m)?

it is easy to show that

m=s+—A& (8.14)

Similarly, considering the reduction of frequency by Aw,, = £y, assuming then a
voltage on capacitance equal to Ug(l — m), we obtain again (8.14). Thus, the
modulation of frequency of the tuned circuit shown in Figure 8.6(a) is fundamen-
tally accompanied by PAM of the output voltage U, and the coefficient of PAM
is determined by (8.14).

Unfortunately, it is difficult to express completely the coefficient of PAM for
all the tuned circuits shown in Figure 8.6 through the peak frequency deviation €
by means of the energy approach. It is much easier to derive it through the differ-
ential equations describing oscillatory processes occurring in tuned circuits. We
will first consider tuned circuits in which a variable capacitor [Figure 8.6(a, b)] is
used as the modulator. The differential equation describing behavior of a charge g,
accumulated in capacitance C, appears as:

dzq 2
@t g =0 8.15
g T (8.15)

Here again it is assumed that the angular frequency @ is described by (8.13).
Then (recalling that £ < 1 and Q. < w) an adequate solution of (8.15) corre-
sponds to an FM oscillation {1]:
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q=Q0(1—§costt)cos|;m t+a%—:°—sin(2mt:| (8.16)

550
m

where ( is the average value of charge g. It is obvious that the capacitance in the
circuit with change of frequency @, should vary according to (8.13) relative to the
average value Cy = 1/(Lag’) by

C=C,(1-2ecosQ2,7) 8.17)

From (8.16) and (8.17), we obtain for a voltage U, effective on the capaci-
tance C [Figure 8.6(a)]

o,(1- —;— cos €2, t)

U, = (8.18)
C,(1-2ecos, 1)

After simple transformation and dropping terms of a higher order of smallness
from (8.18), we get:

U, =U“0(l+%ecostt) 8.19)

where Uy = Qy/Cy is the average value of Uy,.
When the voltage U, acts only on a fixed capacitance C [Figure 8.6(b)], we
similarly obtain:

0O, € €
U.==2(0-—=cosQ )=U_,(1——cosQ ¢ 8.20
58 C ( 2 m ) s.vO( 2 m ) ( )

We convert now to tuned circuits in which the modulator is a variable induc-
tance [Figure 8.6(c, d)]. In this case it is more convenient to approach the problem
from the differential equation of oscillations of the magnetic flux @ of the total
inductance L:

d*®

7 +o, D=0 (8.21)

As (8.15) and (8.21) are similar in form, the approximate solution for magnetic
flux @ can be presented in a form similar to (8.16):

550

D=0, —%costt)cos|:(o zn%ﬂsmnmt] (8.22)

m
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where @, is the average value of flux ®.

We determine the voltage acting on the inductance L [Figure 8.6(c)] using the
relationship U, = d®/dt. Dropping terms of a higher order of smallness in the re-
sult of differentiation of (8.22), we obtain

U, =U,( +§cos Q.0 (8.23)

where Uy = Dp,0.

For a voltage acting on the constant inductance L [Figure 8.6(d)], we can
write Uy, = L(di/dl) — L{d(®/L)/dt], where i = O/Lg is the current flowing in the
tuned circuit. As € < 1, using Ly, = 1/(Co?) = 1/[Careg’(1 + € cos Q, £)*] we find,
for use of a variable inductance as the modulator, that the total inductance of the

tuned circuit varies about the average value Ly = 1/(Codgs?) following an expres-
sion similar to (8.17):

L, =L,(-2ecosQ, 1) (8.24)

85
Substituting now (8.23) in U,, = Ld(®/L,)/dt, applying one of the approximate

equalities used above and again dropping from the result of differentiation terms
of a higher order of smallness, we obtain

U,=U (1+%scos§2mt) (8.25)

55 550

Here, USSO = (L/ LSSO)(DSSOq)G"

From (8.19), (8.20), (8.23), and (8.25) it follows that in all the tuned circuits
of Figure 8.6, with frequency modulation, a parasitic amplitude modulation of an
output voltage is observed as well. Thus the comparison of (8.19), (8.20), (8.23)
and (8.25) shows that the coefficient of PAM depends on the type of modulating
element (variable capacitor or inductance), and depending on how the output volt-
age is obtained can reach values from 1.5¢ to 2.5¢. The phase of the voltage enve-
lope Uy, relative to that of the frequency deviation can equal 0 or 180°.

8.3 PARASITIC AMPLITUDE MODULATION OF OUTPUT
VOLTAGE IN SINGLE-TUNED OSCILLATORS WITH
FREQUENCY MODULATION

Let us consider now the change of output voltage taking place for frequency
modulation of actual single-tuned oscillators, the circuits of which are shown in
Figure 8.4. As in the previous section, we will consider that FM is carried out by a
sinusoidal change of a resonant frequency of the tuned circuits:
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-1 - @, (1+€ecosQ, t) (8.26)

(V)
S5 (LC

where € << 1, and Q,, << wg0. Thus, for application of a variable capacitor [Fig-
ure 8.4(a, b)] or a variable inductance [Figure 8.4(c, d)] as the modulator, the total
capacitance or inductance of the tuned circuit should vary according to expres-
sions C= Cp(l — 2e cos Q1) or L = Lo(1 — 2¢ cos Q,,1).

To examine the dependence of amplitude on an oscillator that is tuned dis-
cretely in time over a wide range, the abbreviated equation (6.34) was used. As
shown in Chapter 7, it is impossible to use this in our case. The problem is that the
Evtianov method, with which (8.1) was obtained, assumes that the reactance ele-
ments of the load (a tuned circuit or coupled circuits in case of a multiple loop
oscillator) are constant. Such an assumption allows us to obtain the abbreviated
oscillator equations using the symbolical expression for complex impedance of the
load Z(jw), representing the resistance of the load to a sinusoidal current with fre-
quency ®, in which jo is considered as the differentiation operator p. In our case,
where the modulator is a variable capacitance or inductance in the tuned circuit,
this is impossible. Besides, as it will be shown below, the transition from instanta-
neous amplitudes of currents and voltages to their complex amplitudes, with vari-
able tuned-circuit reactance elements, requires application of more complex for-
mulas than in the usual application of the method of the symbolical abbreviated
equations (Chapter 6).

Thus, we must obtain new abbreviated equations (depending on whether the
modulator uses a variable capacitor or inductance and on the method of extraction
of the output), distinct from (8.1), that will allow us to examine the case specified
in the beginning of this section. In principle it can be done on the basis of the gen-
eral approach (Chapter 7), but we will approach it in detail by a direct approach
for the oscillator considered, such as that using the inductive three-point [Figure
8.4(a)]. Assuming an active device input current of zero, r\/r, = L,/L, and letting 1
= C/Cy, we can write for the oscillator of Figure 8.4(a) the differential equation
linking oscillator output voltage Uy, to the output current i of the active device:

[(p + 0)53080 )Pn + m.v:O ]u.\'.\‘

= 8 R |:( J'H'l pk (p+mss()8 )P n (p+0)s3080) i
P pk m:sO

where p = d/dt is the differentiation operator 8¢ = rl(ogl) is the attenuation of the
tuned circuit in the absence of FM, R, = pZL/(rCon) = R0/ is the resistance of
the tuned circuit at its connection to the output of the active device, p; = L\/L;
r=nr +r2, andL=L1 +L2.

8.27)




Output Voltage of a Frequency-Controlled Oscillator 185

Attenuation in tuned circuits is a small quantity. Under the assumed restric-
tions (e << 1, Q << @), W40 and C are slowly varying functions of time, and
therefore derivatives pn and p’n} are also small. As in the expression of PAM it is
sufficient to maintain in (8.27) only terms of the first order of smallness; we will
neglect the terms including &, pm, pzn, 8¢, and 803 to obtain

(2<PT'I>P + T]PZ + mnosonp + mssoz )uss

— 2 (8.28)
=60R[wssonp+l pk n_p3:ll
pk pk Ct)sxO

where the brackets <...> limit the activity of the functional operator p inside them.
Let us write the oscillator output voltage u,, and the first harmonics #; of the
output current of the active device in the form:

u,, =Us exp(j [ @,dt) =U,, exp(j@)exp(; [ o,,d0) (8.29)

i, = I exp(j [ ,,dr) = I, exp(j@) exp( [ o, ) (8.30)

where U, [}, and ¢ are slowly varying functions of time (because of the smallness
of &, €, and Q,, /my,). The abbreviation of the differential equations discussed in
Chapter 6 assumes transition from instantaneous functions u, and i, to complex
amplitudes Uss, [1. It can be realized using (8.29), (8.30), and the following for-
mulas, which can easily be obtained:

pAexp(j{ o, dt) = exp(j[ o,dt)
p*dexp(j[,di) = exp(jf0 )| (o, +p) +(pGo ) |4 @3

Having substituted (8.29), (§.30) in (8.28), transit}oning \X{ith (8.31) from in-
stantaneous functions u,, and i to complex amplitudes U and /,, and maintaining
only terms of zero and first orders of smallness (because of slow change in /; and
o,, derivatives with p, p’, and p* terms of first, second, and third orders of small-
ness respectively), we find:
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{2(1,11)1'@:‘ + [(—(onz +j20,p)+(p(jo, ))] + 0,80, + 0, } Us 832)

=8,R[ (@, p, +(1/ p, ~ DM [0, )= joo,*) |

Taking into account that o, =, /M, I; = SikUs, R = kR, 2/(0ss050) = To
(where k is the feedback factor of the oscillator), we can write (8.32) in the form

[ T,p+0.25MT,(p)+1 U = S,RU. (8.33)

where S is the average slope of current /, R is the driving resistance, Tj is the time
constant of the tuned circuit in the absence of FM, and M is a number which for
the selected oscillator circuit is equal to 3.

Just as (8.33) was found, the abbreviated equations were obtained for complex
amplitude U s for oscillators shown in Figure 8.4(b-d). All have the same form as
(8.33) and differ only in the value of M, 9qual to —1, 1, and 5, respectively. Having
expressed in (8.33) complex amplitude U through U, and phase ¢, we find

T, 4y, +0.25MT U iﬂ =SRU, (8.34)
dt dt
0 _,

— (8.35)

Note from (8.29) that the oscillator frequency ® = @y + d@/dt, and hence from
(8.35) it follows that ® = ®,,. Thus, the oscillator frequency is equal to the natural
frequency of the tuned circuit and is determined by (8.26).

Equations (8.34) and (8.35) were obtained under the assumption that tuned
circuit loss resistances » do not depend on oscillator frequency ® and are included
in tuned circuits according to Figure 8.1. However, it is possible to show that these
equations are valid as long as the attenuation from loss resistance and other tuned
circuit elements is small.

We will now express the resonant circuit resistance Ry, included in the driving
resistance R = kR, and present on the right side of (8.34), as:

R=R,(1+m,cosQ, 1) (8.36)

where my is the modulation index of resistance R. For the oscillator using an in-
ductive three-point [Figure 8.4(a)] R = Ro/m = Ry(l — 2& cos Q,¢t), and hence,
mpg = —2¢. Recall that the expression R = Ry/1 assumes resistance » independent of
frequency o (i.e., of the variable capacitance C). It is easy to show that generally,
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when the modulator is a variable capacitor, mj = —2&(C, / R, XdR/dC)|c_c, , and
when it is a variable inductance, m, = -2e(L,/R,)(dR/dL)|,.,, -

The examination of PAM in FM oscillators with autobias requires the joint so-
lution of (8.34) and abbreviated equations for the autobias circuit (Figure 8.2):

7. g,

com d t init

~E-R I (8.37)

com ™ com(

where E is the bias voltage, E,,;, is the initial bias voltage, /., 18 the slowly vary-
ing current flowing through the autobias circuit, R, and C,,, are the auto bias
resistor and the capacitor shunting it. The current /., can be expressed through
the average slope S.omo:

I

comQ = Scamo (U’ E)kUss (838)

The assumed earlier sinusoidal type of modulation (8.26) allows neglecting
the higher harmonics, to present expressions for output voltage Uy and voltage E
in the steady-stated mode of modulation in the form:

U, =U

ss0

+V cosQ t+V,sinQ ¢ (8.39)
E=E,4¢ec0os{ t+e,sin( t (8.40)

As slopes S, and S, are functions of U, and E, on the basis of (8.39) and (8.40)
it is possible to present them as:

S, =8,U,,.E))+ a5, +aiw cosQ ¢+ a5,
) ou, OF ouU

a8 .
V2+gE‘—e2]stmt (8.41)

55

8S
S Scom (Us:O’E )+ avwm V 6S el COSQ t+ aSC,,,,, o €, sin th
ouU, oF aU OF

58

(8.42)

where all partial derivatives of functions S, and S, with respect to U and E are
determined at U_=U, and E=E (i.e., calculated at points of steady-state
operation).

Now there are all expressions for the joint solution of the equations (8.34) and
(8.37). The solution is obtained by a usual method of harmonics balance. For this
purpose we will substitute 8.36), (8.39), and (8.41) in (8.34) with
n=1-2ecos,,t, and (8.38) - (8.40) and (8.42) in (8.37). Expressing the sepa-
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rate equations with the appropriate signs, constant components, and coefficients of
cos Q,¢ and sinQ,¢, and neglecting the small terms, we obtain six equations
whose joint solution allows us to find U, £, V1, V2, €), and e;. Thus

) MOQLF ~2m, /)P

) F* 4 P? ’ (8.43)
(mg /e)F +MQ, T,P '
V,=¢ )
F°"+P

where

05 U,k 4Q,T
"o 0E(Q,T,) +B

38, 35S, RAB

P= ss0 - 2 2
ou,, ° U, (Q,T,) +B

oS,

A= ka l:scomo (U.\':O ’EO) + _a(CJD_MOU::Oi|

55

B= chom QSVMU“O +1
OE

From (8.39) and (8.43) we can see that FM in the oscillators being studied is
accompanied by PAM, the coefficient of which is

(8.44)

1/2
mo Y0P _1{M2<Ia2>+4<m,z/s>2}

U, 2 F*+P?

The phase shift between the frequency deviation Aw = gm,0c08Q2,,¢ and envelope
V= VicosQut + VasinQ,t = mUcos(Q2,2 + ') can be defined using (8.43) and

¥ =¥, +arctan(V, / V) (8.45)

where ¥, = 0 for ¥; > 0 and ¥ = 180° for V; <0, with —r/2 < arctan(¥,/ V) < =/2.

Let us study the influence of autobias on parasitic AM in these oscillators,
considering that they operate in the unsaturated regime. Let us calculate first the
coefficient of parasitic AM at low modulation frequencies (Q,, ~ 0). Assuming in
(8.44) that Q,, - 0, we find:
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m= LIRUCPAY) (8.46)

oS
kR 1S, U Ey)+—22U
com com( 550 0) 6U 5:0}

55

95 95

U, OE iR Peom

com U::O + l
oE

The equations obtained from the fixed terms of (8.34) and (8.37) describe the
cutoff and bias diagrams (Chapter 6) in the absence of FM and allow us to find
expressions for the tangents to them:

U, __ 05/0E 547
dE  3S,/0U, \e-r,u,-u,,
du R oS, /0E)+1
Xb = SS . _ k .amUs.\'O( com )+ (848)
dE chom [Scom (Us:O ’ E 0) + UISO (aScam /OE )] E=Ey Uu=Uso
Substituting (8.47) and (8.48) in (3.46) we obtain
m=- [ | (8.49)

Depending on the magnitude of SR, the coefficient X is either positive-going or
negative, while X, is always negative. In the case X > 0, both terms in the denomi-
nator of (8.49) have the same sign, and in accordance with (8.48) the autobias re-
duces the coefficient of parasitic AM, thus reducing m as R, increases. (We as-
sume that Uy, is maintained constant by a corresponding change in E;,;,.) In the
case where X < 0, the stable regime will be realized for X, > X {2] (i.e., if in the
denominator (8.49) the magnitude of the second term is greater than the first).
Thus, coefficient m is alsc reduced with increasing R,,.

Let us consider now the parasitic AM at modulation frequencies 2, which
are significantly greater than 8y = 1/(w,7p). It is easy to conclude that 8 is equal
to half the fractional bandwidth of the tuned circuit in the absence of FM. From
(8.44) with Q,/8; > 1 we have: m = [Mle/2 (i.e., for rather high modulation fre-
quencies the autobias does not affect the coefficient of parasitic AM). Substituting
in the expression m = |[Me/2 the applicable values of M for each of the oscillators
in Figure 8.4, we find that for Q2,. 8y > 1 the parasitic stray AM coefficients appear
to be the same as the those obtained above for FM in lossless tuned circuits (Fig-
ure 8.6).
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Confining the analysis for concreteness to oscillators with modulators repre-
sented by a variable capacitor [Figure 8.4(a, b)], we will consider now the parasitic
AM for all modulation frequencies. Using the accepted approximation to an output
current i supplying automatic bias, we have:

Sl = Syl (e)’ Scom() = ScamYO (9)
where S and S,,,, are the slopes of the approximated current characteristics / and
Icoms Y1(8) and y,(0) are the decomposition coefficients of cosine impulses, and 0 is
the cutoff angle. Having introduced coefficients y,(8) and v,(6), and using three
terms of their expansion in a series for cos 6, we have:

S, =S(l—-zcose+—l—cos3 Gj
2 n 3n

Soomo = S(l—lcose+—l—cos2 Gj
n 2 2n

The calculations using these formulas give sufficiently precise values of
slopes §) and S, at angles 0 lying within the limits 40° to 140°. Applying the last
expressions for slopes S; and S, and the expression cos 8 = (E — E')/kUj, the
derivatives of S| and S,,,,, with respect to U, and E can easily be obtained:

%— = S[ECOSGO —10053 90)/(]:50
5 n T
%: (z—lcoszeoj !
OE T T kU 5,
- 1 1 (8.50)
—em =8 | —cosf, ——cos’ 0, |/ Ugo
au,, 2 n
Sp-s it
T

Substituting (8.50) in (8.43) yields (8.46) as obtained before (note that the feed-
back factor £, included in these formulas, is abbreviated), it is possible to obtain
equations suitable for calculation of the coefficient m and the angle V.

In Figure 8.7 the dependence of the normalized coefficient of stray AM m/e
and phase angle ¥ on dimensionless frequency 2,./8, = Q,,T, are introduced (cal-
culated using the above equations) for oscillators using the inductive three-point
[Figure 8.4(a), continuous lines] and the Klapp scheme [Figure 8.4(b), broken
lines]. The curves correspond to SRy = 1.5 (small regeneration), SR, = 4.35 (large
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regeneration), S,,,Reom = 0.04, 0.57 and 5.13 at SRy = 1.5, and S,,,.R.om = 7.5 and
23.7 at SRy = 4.35.

The values of the ratio mg/e used in these calculations are found assuming that
the circuit Q = wL/r is constant over the frequency range of oscillation. The curves
calculated for T, = T, differ slightly from those shown in Figure 8.7, for which
T, = 0.17,. The curves shown in Figure 8.7 allow us to revise the definitions of
“low frequencies of modulation” and “high frequencies of modulation” used in the
equations above. The former (i.e., the frequencies at which the parasitic AM coef-
ficient is approximately derivable from the static modulation characteristic) should
meet condition Q,, < 0.18, (for large values S_,,.R..n this condition is less rigid,
and in the case of the inductive three-point and independence of circuit Q from
frequency g, the coefficient m is independent of modulation frequency). The
latter [i.e., the frequencies at which the parasitic AM coefficient is essentially in-
dependent of the autobias (and S, ..R..) and are close to those based on FM in
separate lossless tuned circuits] should meet the condition €, > §,. At modulation
frequencies (2, smaller than &, as follows from Figure 8.7, the increase in product

SeomPeom reduces m and ¥ and simultaneously aligns their values in the modulating
frequency range.
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Figure 8.7 Dependence of normalized PAM factor (a, b) and phase shift ¥ (c, d) upon modulation

frequency for the inductive three-point scheme and Klapp scheme for small (a, ¢) and large (b, d)
regeneration factors.
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We attempt now to give an energy-based explanation of the results. As was al-
ready noted in Section 8.1, compensation for energy losses in the output load of
the oscillator (i.e., in its tuned system) is provided by input of energy from an ac-
tive device in the load. Thus, in the case of a fixed frequency oscillator under
steady-state conditions, the compensating energy arriving during each oscillation
period and the energy lost during that period are made equal. Owing to the nonlin-
ear properties of active devices and the dependence of load resistance (i.e., reso-
nant circuit resonance resistance at points of connection to the active element) on
the oscillation frequency, this equalizing of energy occurs at different oscillation
amplitudes for different frequencies. Therefore, the voltage output of the oscillator
depends on frequency.

For FM with low modulation frequencies (€2, < 0.18,), there is enough time
for the oscillator amplitude to be adjusted, by equalizing of the energies lost and
gained, at each of the frequencies over which the oscillator sweeps. This means
that the oscillation amplitude at each frequency during the modulation cycle is
close to that of the oscillator under fixed frequency (without FM), steady-state
conditions for that frequency. However, with increase in modulation frequency the
oscillation amplitude is increasingly influenced by the following two factors: the
bandwidth of the tuned circuit and the effect on tuned circuit energy of modulator
reactance. Considering FM oscillations in an ideal single-tuned circuit, it has been
established that these variations result in an increase in energy in the tuned circuit
during one half-cycle of modulation followed by a decrease during the succeeding
half-cycle. The minor effect of the second factor for low frequencies of modulation
(Q,, <0.18,), as compared to the case of FM in an ideal single-tuned circuit where
it occurs irrespective of the modulation frequency, is caused by tuned circuit losses
and their link to the active device. For high frequencies of modulation (€2, >> §,),
the influence of both factors is so significant that oscillation amplitude is com-
pletely determined by them. Thus, because of tuned circuit inertia, the equalization
of energy supplied by the active device and that lost in the tuned circuit is con-
trolled only by the energy within the modulation period rather than that in the os-
cillation period. If the changes in modulator reactance did not result in variations
of tuned circuit energy, oscillation amplitude would remain constant, but as these
changes do occur the amplitude is also affected. For high frequencies of modula-
tion (2, >> &), the changes in modulator reactance causing alternating addition
and withdrawal of energy in the tuned circuit are so rapid that the tuned circuit
inertia precludes influence on circuit power losses and their compensation. This
allows us to consider single-tuned FM oscillators (Figure 8.4) at high modulation
frequencies to be ideal single-tuned circuits (Figure 8.6). It also shows that the
parasitic AM coefficients for the oscillators analyzed in this paragraph, for
Q,, >> §,, are the same as those derived earlier by consideration of FM tuned cir-
cuits assumed to be ideal.

As the tuned circuit inertia and effect of modulator reactance on oscillation
frequency (i.e., on parasitic AM coefficient) have no effect in the case of FM with
low modulation frequencies (QQ, < 0.18, ), the influence on amplitude will be
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minor also in cases of large, slow continuous tuning, although the relationship be-
tween variations of amplitude and generated frequency will now certainly be dif-
ferent because of nonlinear properties of the active device and frequency depend-
ence of resonance resistance of the tuned circuit. With reference to continuous
periodic tuning (as, for example, in swept oscillators), the last assertion can be
rendered more concrete. If the oscillator is swept at frequency F and if the har-
monics up to n are essential to system operation, this assertion can be considered
valid for F < 0.18¢/(2nn). From this it follows that for F < 0.18¢/(2nn), the varia-
tion of oscillator amplitude as considered in this chapter can be calculated using
expressions obtained in Section 8.1 .

84 USE OF A VARICAP AS THE FREQUENCY CONTROLLER

Varicaps are often applied as frequency controllers (tuning elements, FM modula-
tors) in modern oscillators. The dependence of oscillator amplitude on frequency
for discrete tuning in time, and also for slow continuous tuning (propositions made
in the closing part of the Section 8.3 are valid here) can again be obtained using
(8.7) and (8.8), valid for oscillators operating at fixed frequency and in the steady-
state regime.

When the modulation frequencies cannot be considered low, we must apply
the differential equations describing FM oscillator processes in order to find the
dependence of parasitic AM coefficient on frequency deviation, as was done in the
previous section. When using varicap modulators there will be additional terms in
these equations, as compared to those considered earlier, because the capacitance
of the varicap depends not only on the modulating voltage but also on the RF volt-
age imposed on the varicap by the oscillator. For study of parasitic AM using the
approximation set forth in this chapter, these terms can practically be neglected,
and the results can be applied also to oscillators with frequency modulators using
varicaps.

However, in a series of publications [1, 3], in which FM oscillators using
varicap modulators were investigated, results differing from those above were ob-
tained. This is explained by the fact that in many publications the differential equa-
tions were solved with some inaccuracy. We describe below the nature of this in-
accuracy.

Formulating the differential equations for FM oscillators with varicap modula-
tors, we must use the expression for the high frequency component of current
flowing through the varicap. Let us write this expression, proceeding from the
known formula for differential capacitance of a single varicap:

c,,(e)zcm( P )

Q. +e

<
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where e is the external voltage applied to the varicap, Cyy is the capacitance of the
varicap at e = 0, @, is the contact potential difference, and # = 2 or 3 for a sharp or
smoothly varying p-n junction, respectively.

Because, by definition, the current i, as a function variation of the charge g, is
equal to dg/dt, and the capacitance Ci{e) = dg(e)/dt, the current flowing through
the varicap is:

dq dq(e) de _

— 8.51
dt  de dr A) @-3D
From (8.51) it follows that if constant bias £ and a high frequency component u
are applied to the varicap (i.e., if e = E + u), then

i:@@%— (8.52)

where Cy(e) = Cnle)o/ (. + E + w)Y". If, in addition to voltages E and u, the
modulating component e, is applied to the varicap (i.e., if e = E + u+ ¢,) from
(8.51) follows:

edu

i=C (e)[d o

J C() +C() (8.53)

As the high frequency voltage u appears in the expression for Ci{e), the first term
of the right part of (8.53) must be taken into account in determining the high fre-
quency component of oscillator modulation current. However, in many published
articles this was not done: instead the high frequency component of current flow-
ing through the varicap was determined by (8.52) with C, (e) = C, (E + e,, + u).

In [3], the FM oscillators were studied for a modulator based on back-to-back
varicaps with sharp p-n junctions. It was assumed there that the equivalent capaci-
tance of both varicaps is defined by:

P,
C,..(e)=C £ 8.54
veg (€) V“’(’ch +E+em+u/N:| (8.54)

where  Crego = Crn1Cro/ (Cron + Cr),
N=|(Cw1+ Cr2) (Cror — Cir2)), and

Ciy1 and Cyp, are the capacitances of the varicaps with no voltages on
them.
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But as follows from [2], (8.54) cannot be used generally when N = 1. It is valid
only for one special case (V= 1), namely, when the modulator is a single varicap
and Cyp; =0 or Cyy o0 and Crey = Cya(Crep = Cirz) 0f Crg = Ci1(Crep = Crpy),
respectively. Thus, as in the earlier case, the capacitances Cy, and Cy, are differen-
tial capacitances defined as Cy = Jg(e)/de, where ¢ = E + ¢,, + u. Results obtained
in [3] as well as in [1] are incorrect for this special case because the high fre-
quency current flowing through the varicap is also determined by (8.52), if it is
assumed that Cy=C, (E + e, + ) (i.e., the component, conditioned by the first
term in (8.53), is also left out).

In summary, as indicated abeve, we study free oscillations in an ideal single-
tuned circuit with a varicap (Figure 8.8) with modulation of varicap capacitance
and thereby the frequency of resonant oscillations. Thus we will consider for con-
creteness that the varicap has a shirp p-» junction.

It appears that for our tuned circuit the following differential equation applies:

Lo (8.55)
dt

where i is the high frequency current flowing in the tuned circuit, and consequently
through the varicap, and u is the high frequency voltage applied to the varicap. For
a solution to (8.55), we shall substitute into it the expression for the current of the
varicap (8.53)

d(e, +u)

i=C.(e) d

(8.56)

where Ci{e) = Cip[@. /(. + E + v, + u)]">. The fact that (8.56) also includes the
low frequency component of the current imposed by the modulating voltage e,
applied to the varicap is not a hindrance to the study, as the method of solution of
(8.55) selected below (the method of harmonic balance) will subsequently allow us
to take into account only those components that are interesting. So, having substi-
tuted (8.56) in (8.55), performed transformations, and entered a series of identifi-
cations, the following equation can be obtained:

L
b
L G u

Figure 8.8 Ideal tuned circuit with varicap.
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2 2
—0.5(1+x+y)-3/2(ﬂ’%;—y)J +(1+x+ y)"”zd—(;t-;—y)+co02x=0 (8.57)

where: x = u/(@. + E) is the dimensionless high frequency voltage on the varicap,
vy = e,/(¢. + E) is the dimensionless modulating voltage,
®y’> = 1/[LCAE)), and
CUE) = Cn(9c + E).

It appears that w, is the angular frequency of resonant oscillations in the tuned
circuit forx - 0 and y=0.

Multiplying all terms of (8.57) by 2(1 + x + »)*” and transferring from the de-
rivatives d(x + y)/dt and d*(x + y)/dt* to derivatives d(x + y)/dt and d*(x + y)/d<’,
where T = gt is dimensionless time, we change (8.57) to a more suitable form for
further solution:

2 2

—[M} +2(1+x+y)—d—9%y)+2(l+x+y)3’2x=0 (8.58)
dt dt

For solution of (8.58) we will be confined to the case x < 0.6 and y << 1. The first

of these inequalities is usually met in oscillators where frequency is controlled by a

varicap, and the second corresponds to the case of small frequency deviations usu-

ally characterizing FM. These limitations allow us to decompose the expression

Q+x+ y)y2 in an ascending power series:

2 3
y)3/2=1+3(x+)")+3(x+J’) _(x+y) 4

(l+x+
2 8 16

(8.59)

As opposed to the case in which x — 0 and y — 0, where (8.59) degenerates
to the customary equation of a sinusoidal oscillator d%x/dz” + x = 0 with the solu-
tion x = Xsint = Xsinwy, in our case x does not tend to zero, the resonant angular
frequency of oscillations » will not be equal to g, and the solution of (8.59) will
include higher harmonics as well. Having designated a first harmonic of oscilla-
tions as x; = X;sin0, where 0= _"mdt = I(m/ ®,)dt, and having substituted it in

place of x in (8.59), after the applicable angular transformations we see that the
latter contains the terms including cos26 and cos36. Neglecting the third harmonic
[inclusion of this and higher harmonics actually present in the solution of (8.59)
results in insignificant corrections to magnitudes given below], we can search for a
solution to (8.59) in the form:

x=X,sin0+ X, cos20 (8.60)
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Note that from substitution of x, = Xsin0 in (8.59) it follows that the amplitude X
has an order not greater than X3 (i.e., X; = X3).

Assuming that the modulation of tuned circuit resonant frequency is by a sinu-
soidal voltage e = € sin ¢, wheie Q,, is the angular modulation frequency, and
substituting y,, = &/(¢. + E), we can introduce a dimensionless modulating voltage
in the form y = y,, sin Q,z. Transferring to dimensionless time T = @yt and substi-
tuting o = Q,,/®o, we obtain

y=y, sinot (8.61)

It was assumed above that y,, << 1, and we shall consider also that a. << | (the
inequality QQ,, << @, is characteristic of FM radar). As y,, << 1, we will also have
rather small variations of amplitudes X| and X, and magnitude d0/dr, relative to
their values in the absence of modulation (X}, X3, 6,) (i.e., of order y,,, 100). As
they will vary with frequency {2, = awy, we will find dX\/dt = oy.X),
d*Xyldt* ~ o0’yX,, and d*0/di’ ~ ay,dO/dr. By virtue of the negligible value of
the derivative d?'Xz/d'r2 ~ azy,,,Xz, hereinafter we need consider only the derivatives
d’X,/d7’* and d*0/d’.

Substituting now (8.60) and (8.61) in (8.59) and applying the standard trigo-
nometric formulas, we obtain an equation composed of the permanent terms, in-
cluding functions sin 8, cos 0, sin 20, cos 20, sin 30, and cos30. Let us solve these
equations, proceeding from the method of harmonic balance, pursuant to which the
equation will contain all reduced trigonometric functions. Thus, for expressing the
parasitic modulation of resonant oscillations in the tuned circuit, applicable to fre-
quency modulation, it is sufficient to use only equations balancing the terms with
functions sin 0, cos 0, and cos 26. These are

2 3,2 2
7X1X2£@J ~2Xl(d—e —ZyMXI[@) sinat +2X, -3X, X,
dt dt ! dt (8.62)
+3y, X, sinat+ %Xl3—%me1Xzsinar=O
d’ d’e
4X2id)—{'--@—Zame,d—ecosar4v4§££+2Xl—?~X,Xz——7=0 (8.63)
dt dt dt dt dt dt dt
2 2 2
1)(12(@) —8X2(51~9) —symxz(@) sinat+2X,
2 dt dz dt (8.64)

3

2 3 ’ 3 ?
—EX, +-5me2mnow—zmeI sinat =0
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Note that in writing (8.62) - (8.64) the terms of order of smallness higher than X;
were dropped (it was assumed that X, ~ X7), and also (assuming that
dX,/dt =~ oy, X, and d*0/dr’ ~ 0y,,d0/dx) among the terms including sin or and
cos at, those containing products o.y,f or o’y,. were dropped as considerably
smaller than those containing y,, or product oy,

For y = 0 and x — 0, the solution of (8.59) gives df/dt = 1 (i.e., ® = wg). For
x < 0.5 (as assumed above) but not approaching zero we should expect that the
value d6/dx will be approximated by d6/dt = o + AdB/dr. Thus, proceeding from
the condition x < (.5, we can assume that AG << 1. The presence of a modulating
signal (y # 0) will result in modulation of the tuned circuit resonant frequency, and
having confined the calculation only to the first harmonics of frequency variation,
we find that d6/dt = 1 + AdB/dt + esinart. By virtue of the small magnitude of
Ad6/dt and higher harmonics of variation of tuned circuit resonant frequency, the
magnitude & will appear practically as a relative frequency deviation.

The presence of FM should result in the appearance of parasitic AM. In the
study of AM in an ideal tuned circuit where the modulator was a linear capaci-
tance, it was found that the variation of the voltage on this capacitance coincides in
phase with variation in tuned circuit frequency. This circumstance permits us to
drop as negligible the higher harmonics of amplitude variation and to search here-
inafter for magnitude X, in the form X, = X, + asinar.

Substituting the expressions d0/dt = 1 + AdB/dt + esinat and X, = Xjp +
asinot in (8.64), and dropping all small terms (noting that Ad’6/dt* =0, a << 1,
£ << 1,y, << 1), we obtain

X,=-X,,/6 (8.65)

We now substitute the following expressions in (8.62):
X1 =Xjp + asinart
dB/dt =1+ Ad0/dt + esinat
X, = —X0'/6

Dropping terms of a higher order of smallness and retaining in one case only per-
manent terms, and in the other the terms including a trigonometric ratio sin ot
(i.e., again applying a method of harmonic balance), we obtain two new equations.
From the first we find

ad9__ 3 xo

-~ X 8.66
dv 1927 (8.66)

The second equation gives the relative frequency deviation &:
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1
£=— 8.67
RL (8.67)

And finally, substituting following expressions in (8.63):
X, =Xyt asmaz
db/dt =1 + Ad®/dr + esinat
X, = -X,0%/6

Again dropping the small terms, we obtain:
3
a=—2—aX10 (8.68)

From (8.68) we obtain, for the parasitic AM coefficient m = a/Xj,

Thus, within the limits of the accuracy with which the coefficients of parasitic AM
of the voltage on the modulating capacitance were derived, we obtain for FM in an
ideal tuned circuit using as the modulator a linear variable capacitor (Section 4.2)
the same result as for the varicap ( this section).

It is interesting to note following circumstances. We often use the known
Thompson formula = l/ JLC to determine the influence of a high frequency
voltage u = Usinwt, applied to the varicap that parallels the coil, on the frequency
of a tuned-circuit oscillator. Thus, instead of capacitance C the investigator often
substitutes the expression for equ valent capacitance of the varicap C,,, expressed
in terms of the constant capacitance

Cr= Cualod (@ + E+u))”?
or as a ratio Q,/U, where Q, is the first harmonic of a charge present in the vari-
cap:
1/2

q = 2Cy /(. + E + u)o]

Entering the value x = X psinwt == [U/(@, + E)] sinot and assuming X;q << 1, we
thus obtain, keeping only the terms up to X;o*:

3
Creg = C,,O(E)[l = sz)
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2
Cres =Cro (E)(l + —)%QSO—]

respectively. From these, the expressions for oscillator frequency become

3
VRN (I—EXWZ)

2
0=, [1_%)

respectively, where  is the oscillation frequency for Xjo — 0 (i.e., U — 0). Com-
paring the frequency changes indicated by these equations to that resulting from a
high frequency voltage applied to the varicap, as derived above by solution of dif-
ferential equation (8.58)

Ao A5,

(Do_d‘t—19_2 10

(i.e., by the more precise method), we can see that the more precise method yields
a significantly smaller change.
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Chapter 9

Nonlinearity and Linearization in
Varactor Control of FM Oscillators

It is convenient to use electric methods for frequency control of oscillators such as
those used in sweep generators and in FM systems, including those used in short-
range radar. Thus, the relationship between frequency and control signal (a voltage
or a current) should be as close as possible to linear. This requirement is essential
for short-range FM radar, as has been shown in the first part of this book.

The most widely applicable electronic controller of oscillator frequency is the
varactor, a special semiconductor diode whose capacitance depends on a constant
reverse voltage, or several varactors connected in an inverse-parallel or inverse-
series manner. This makes it necessary to study the nonlinearity of frequency de-
pendence upon the control voltage applied to the varactor or varactors. This prob-
lem is solved in this chapter.

In the first investigation phas¢ we will consider that the active component of
the oscillator is inertialess at the operating frequency, and that the feedback factor
of the oscillator is a real quantity. These assumptions allow us to consider the os-
cillation frequency equal to the resonant circuit frequency. It confines the analysis
to consideration of oscillators using a single-tuned circuit, (i.e., analysis in isola-
tion from active components).

In practice the resonant circuits of all single-tuned oscillators controlled by
varactors can be reduced to the two types shown in Figure 9.1 (if the frequency
controller uses several varactors, it can be always reduced to a single equivalent
varactor). We can consider capacitive coupling of the varactor to the oscillator
circuit as shown in Figure 9.1(a) or autoinductive coupling as in Figure 9.1(b). The
fixed capacitors (Cy, C, and parasitic capacitance C,) included in the circuits allow
us to take into account not only the capacitance of oscillator circuit elements, but
also self-capacitance of the active component of the oscillator and the package
capacitance,

The study of nonlinearity in the dependence of resonant frequency of these
circuits upon the varactor control voltage is performed below for large frequency
changes (as in a sweep oscillator), and for rather small variations (the case of

201
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-——1 ————
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Figure 9.1 Circuits of tuned oscillators with (a) capacity and (b) autoinductive coupling to the
varactor.

short-range FM radar). Thus, the consideration of large changes is restricted for
brevity to the case of capacitor coupling of the varactor to the oscillator circuit of
Figure 9.1(a). The fact is that with autoinductive coupling the capacitance C, is
necessary and it must also meet the condition Cy > C, max + C,, Where C, pay is the
maximum value of varactor capacitance. This condition follows from the fact that
with autoinductive coupling the resonant circuit of the oscillator is actually a dou-
ble loop and its second resonant frequency (omitting the above-stated inequality)
appears commensurable with the oscillator operating frequency. With frequency
control of the oscillator, this circumstance can lead to mode jumping in frequency,
precluding its use in FM radar. The availability of rather high capacity C, certainly
does not allow large frequency changes in oscillators with autoinductive coupling.

For the first stage of study of general cases it is further assumed that the
varactor capacitance depends exclusively on the control voltage applied to it (i.e.,
that it does not depend on the RF voltage on the varactor). The foundation for this
conjecture is as follows. While the nonlinearity of the dependence of resonant fre-
quency of these circuits upon the control voltage at predetermined limits of its
variation is increased by the effect of RF voltage on the varactor, the frequency
drift also simultaneously increases. In all, the influence on control nonlinearity of
RF voltage on the varactor for a given frequency deviation should not lead to a
significant correction. This is demonstrated further by consideration of some spe-
cial cases.

It is impossible to obtain the required linearity of control voltage dependence
in FM signal oscillators and resulting nonlinear distortions of the signal for large
tuning ranges only by selection of circuit components. Therefore, it is often neces-
sary to resort to special measures, some of which are also discussed in this chapter.
We consider in Section 9.4 the widely used method of linearization of the control
voltage dependence by predistortion of the control voltage with diode-resistor cir-
cuits. The chapter concludes with a description of several methods of reducing
nonlinear distortions of the signal.
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9.1 NONLINEARITY OF FREQUENCY DEPENDENCE OF SINGLE-
TUNED OSCILLATORS ON CONTROL VOLTAGE OF THE
VARACTOR WITH LARGE FREQUENCY CHANGES

The dependence of frequency f of oscillator circuits of Figure 9.1 upon varactor
control voltage E,. has a parabolic form, as shown in Figure 9.2. Let us call this
dependence the oscillator control characteristic.

Let us draw a straight-line dependence fi(E,.) in Figure 9.2, intersecting the
control characteristic at two points such that the greatest absolute frequency devia-
tions of the oscillator within the limits of its variation fp, t0 fqax On the two sides
of the line are equal. We will use their magnitude (Af)max = |f — filmax @s the nu-
merical criterion of control characteristic nonlinearity. We can see that such a cri-
terion allows us to assert that at any point the control characteristic differs from
linear by a magnitude Af not greater than (Af )max-

Let us now move the straight line f,(E,.) parallel to itself downward so that it
passes through the least and greatest frequencies of the tuning range (fain, fmax) and
we will designate this new dependence f; (E..) (the dashed line in Figure 9.2).

Let us define 8f as the difference between frequencies f and f;". We can see
that

(A ) =058 ) oy ©.1)

where (8 )max 18 the largest value ¢f the difference 8f = f - £, in the oscillator tun-
ing range.

We will confine the discussion for brevity to the analysis of nonlinearity of the
curve f(E,.) for the circuit shown in Figure 9.1(a). The derivation of the greatest
variations of f requires that the capacitances C, and C, should be minimum (i.e.,
that they mclude only self-capacitance of the active component and package ca-
pacitance). In the case of autoinductive coupling of the varactor, the capacitance
C, is important and it must be sufficiently large (Cy > C, max + C,, Where C, pa 18

fonin I~

Figure 9.2 Dependence of oscillator frequency fon the voltage controlling the varactor, and its
linear approximation.
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the greatest value of varactor capacitance applicable to frequency fy;,). Thus, the
oscillator circuit shown in Figure 9.1(b) does not allow large tuning.

Thus, on the basis of Figure 9.1(a) we may write the following expression for
generated frequency:

1 C+C,+C,
f=— - 9.2)
2\ L[ CC, +C,C,+CC, +C,(C+C,) ]
For capacitance of the varactor we have the known expression:
— ‘Pc — -1y
C,=Coil——=C,_, . (1+PB) 9.3)

9. +E,

where C, is the capacitance of the varactor at E,. = 0, ¢, is the contact potential
difference, v is the power of the radical, equal to two for sharp p-n junction and to
three for a smooth one, and C,.., = C,(E.. min) is the capacitance of the varactor at
E,.=E, nin P=Esc — Eyp min)(@c + E,. mn)- Having substituted (9.3) in (9.2), it is
easy to obtain, for frequency f

1 \/ (@a+b)(1+P)" +1 ©4)

S = JIC. _ \(ab+bd +ad)1+B)"" +(a+d)

where a = C/C, pay, b = C,/C, nax, and d = Co/C, ay. Finally, assuming that

1 a+b+1 1
Join =

" onJIC.. \ab+bd+ad+(a+d) 2nJLC..

where Cpay is the value of selective system capacitance C;, applicable to minimum
frequency fun, we rewrite (9.4) in the form:

S (@+0)a+p)Y +1
Jri (ab+bd +ad)1+B) Y +(a+d)

(9.5)

where z = C;; 1ax/C, max-
From Figure 9.2 it follows that the frequency f;" is related to the control volt-
age E, by

fmax _fmin
E -E

Yo max vemin

f = fuin + (E.-E

vcmin)

(9.6)
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Having divided and multiplied the second member in the right part by ¢, + E,, min,
it is easy to reduce (9.6) in the form:

1 fn =14 (K, =B/, ©.7

where:  Kr=fr./fon is the frequency coverage coefficient, and
Bmax = (Evc max Evc rmn)/(q,c - Evc m'm)-

Having at our disposal (9.5) and (9.7), it would be possible to substitute them
in a differential (8/)/fmin = f/fuin — /1 /fimin, and then, considering it as a function of
the magnitude , to find its maximum. However, to obtain an analytical expression
for (8 )max/fmin (still strict only for the special case) we will hold constant the first
term in the right side of this differential, and change the second member of (9.7)
from the variable /B, to a variable f/fn;,. This is not difficult to see using (9.7),
assuming that the magnitude B, corresponds to frequency fp,.. Having performed
this change and substituted the new expression for f{ /fa;, in a differential

(8 fenins = f lfmin = 1y fomins

we obtain:

iZL_I_(Kf_I)L;f/fm) (ab+bd +ad) - z(a +b)

Jain i z—K;(a-(—d) " )
K2(ab+bd +ad)—z(a+b) |

2=/ foe)' (@ +d) ] »
(9.8)

We will consider in the beginning the special case in which the capacitance of
the varactor C, is the only capacitance of the resonant circuit (i.e., the capacitors
C, Cy, and C, shown in Figure 9.1 are omitted). Thenz=1,a - w0, b=0,d =0,
and (9.8) becomes:

K, -1 ¥
_§L=_L_ 1.__2f_ f -1 (9.9)
fmin fmin K/7 —l fmin
Study of the differential &f/f,;, shows that it reaches a maximum value at
12y-1)
K7 -1
_i_ = ____f__) . (9.10)
fmin 2Y(Kf - 1)

Now substituting (9.10) into (9.9), we obtain the expression for the ratio
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(Sf)mx _ (sz.y _1) 142y-1) B
fmin ZY(Kf - 1)

O R R
&7 -1 | 21K, - 1) !

In Figure 9.3 we show with solid curves the dependence of the ratio
(8 max/fumin Upon the oscillator frequency coverage coefficient for values y = 2
(varactor with sharp p-n junction) and y = 3 (varactor with smoothly varying p-n
Jjunction), calculated using (9.11). The calculation of the ratio (8f)max/fmin for y=13
was restricted to values K, < 1.6, as larger values are not encountered in cases of a
varactor with smoothly varying p-n junction. We see that for equal values of the
coverage coefficient K, the deviation from a straight line of the oscillator control
characteristic is larger for the varactor with a smoothly varying p-n junction.

We note from (9.10) that ratios of frequencies at which the magnitude
(8f)/fuin appears maximal for given coefficient K practically coincide with those
for (K¢+ 1)/2. This circumstance (assuming that a maximum of dependence of the
dimensionless differential (8/)/fz,, on the dimensionless quantity f/fuy is not
sharply expressed) allows us to determine (8f)pax/fmin by @ substitution f/fp, =
(Ky+ 1)/2in (9.9). Thus, we obtain one further expression for (8f )max!/min:

9.11)

Figure 9.3 Dependence of the ratio (8 )y (fmin ON the frequency coverage coefficient with (- - - -)
and without (- ) considering the radio frequency voltage on the varactor.




Nonlinearity and Linearizatwon in Varactor Control of FM Oscillators 207

K, +1Y"
( ; ] 1} 9.12)

The dependence of (8f )max/fmn O coefficient K calculated with (9.12) agree com-
pletely with those (solid curves) derived using (9.11), within the plotting scale of
the ordinate of Figure 9.3.

Let us show now for the special case z =1, a w0, b = 0, d = 0 that the calcu-
lation of the influence of an RF voltage on varactor capacitance does not introduce
significant correction in the result obtained by determination of nonlinearity of the
oscillator control characteristic with (9.11) or (9.12). Naturally, we will consider
that the tuning range of the oscillator (i.e., coverage coefficient Ky ) is fixed. Thus
we will be confined to the case in which the influence of an RF voltage on varac-
tor capacitance is most significant, namely when the varactor with sharp p-n junc-
tion 1s used.

It is possible to show (see Chapter 8) that an RF voltage with amplitude U
acting on a varactor with sharp p-r junction changes the resonant frequency of the
circuit of Figure 9.1, with Cy = C,, == 0 and C = oo, by the correction

A 5 o, s{ U Y
— = X F
®, 192 192( @, +E,

This correction allows us, instead of expressing the differential capacitance of the
varactor by (9.3) for y = 2, to use an expression depicting its equivalent capaci-
tance, in the following form:

2
Co=Cy|—2_[1: 2| Y (9.13)
3 (pC +EVC 96 (pC+EVC

where U is the amplitude of the RF voltage at the varactor. Having taken advan-
tage of the earlier identification

(&) max :(Kf+1!_1 K, -1

2
fmin 2 K/Y_l

B = (Evc - Evc mm)/((pc + Evc mm)

it is easy to reduce (9.13) to the form

s( U LY
) 1 » S U 1 .14
Cveq Cvmax( +B) [1+96((pc +Evcmin J(l +[3) } (9 )
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where, as earlier, C,,., = C,0\@. (9, +E ) -

The amplitude of the RF voltage U appearing in (9.13) and (9.14) varies, as a
rule, with tuning of the oscillator (i.e., it depends on the control voltage E,.).
However, as its effect on capacitance C,,, is significant only for small values of
voltage E,., we may consider the amplitude to be constant and equal to that value
which it has for the minimum voltage E,, nin. Thus, as the influence of amplitude
on capacitance C,,, will be greatest for £, min + ¢. = U, we consider that this ap-
plies (smaller values E,, ., are excluded, as they would cause the opening of the
varactor p-n junction, which for many reasons is undesirable). Thus (9.14) now
becomes:

anf 3( LY
Cveq = Cvmax(l+B) [1+Tg[a_ﬁj :| (915)

Supposing now that E,, = E,_ n;, (i€, B = 0), we find from (9.15) the following
expressions for the maximum value of the effective capacitance of the varactor:

3
C =C 1+— 9.16
veg max vmax( 16) ( )

As for arbitrary and minimum generated frequencies we have
f =1/(21c1/LCwq) and f =1/2nLC,_ ), we obtain an expression for the
ratio of frequencies f/f;, from (9.15) and (9.16):

f_ +3/16)7Q+p)

2172
eanof L) ]

Unfortunately (9.17) does not allow us to obtain a formula with which we could
calculate the ratio (8/)max/fmin for a given frequency coverage coefficient K, as was
possible when the RF voltage acting on the varactor was ignored in (9.11). How-
ever, resorting to computer facilities and using (9.7) and (9.17), we can find the
ratio (8f Jmax/fmin (recalling that (8 max/fuin = (f — f Wfain = flfin — f /fuin). The
resulting dependence of (8f )max/fmin ON coefficient K for a varactor with sharp p-n
junction, taking into account presence of an RF voltage on the varactor, is shown
in Figure 9.3 (dashed line) together with curves obtained by disregarding this volt-
age.

From the curves shown in Figure 9.3, we see that the relative error in the
value of (8f)max/fmin Caused by ignoring the RF voltage on the varactor does not
exceed 10%, when the varactor has a sharp p-n junction (y = 2) and is the only

(9.17)
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capacitance of the resonant circuit. It is also apparent that in the case of the varac-
tor with smoothly varying junction: (y = 3), this inaccuracy will be even less, be-
cause of the smaller influence on its equivalent capacitance C,., of an RF voltage.

We now return to the general case, in which the capacitances Cy, C,, and C of
Figure 9.1(a) do not obey the condttions Cy =0, C, = 0, and C = o. Unfortunately,
(9.8) in this case does not allow us to obtain an analytical expression for the mag-
nitude (&f )max/fmin- However, it is not difficult to calculate it with adequate accu-
racy. In this chapter, the case of rather large frequency tuning is interesting to us.
The derivation of such changes is possible only in the case where the capacitance
of the varactor plays a significant role in the total capacity of the oscillator circuit
(i.e., when the inequalities C, > C;. C, > C,, and C, < C apply). This circumstance
leads to a ratio f/fmn, applicable to magnitude (8/)max/fmin, that is still close to f/fmin
= (Ky+ 1)/2. And as the maximum of dependence of a dimensioniess differential
&f [fmin on the dimensionless frequency f/fmn at Co # 0, C, # 0, C #  is expressed
only approximately, a more precise value for it can be obtained with (9.8), in
which f/fnin = (K + 1)/2.

These calculations demonstrate that with a given frequency coverage coeffi-
cient X the dimensionless differential (8f)max/fmin i reduced (i.e., the oscillator
control characteristic is more linear), as the inequalities C, > C;, C, > C,, and
C, < C apply more strongly.

Thus, we may meet the requirement for linearity of the oscillator control char-
acteristic by appropriate choice of the oscillator circuit and capacitors included in
it, if the allowable deflection from a straight line of that characteristic (Af)max =
0.5(8/ Ymax is within the value given by (9.11) or (9.12). If this is not the case, and
also when the permissible variation (Af)max is less than the value from (9.11) or
(9.12), it is necessary to resort to different methods of linearization of the control
characteristic. In particular, it can be the method considered in Section 9.3,

9.2 NONLINEAR DISTORTIONS WITH FREQUENCY
MODULATION USING VARACTORS

The derivation of formulas for calculation of nonlinear signal distortions is carried
out below for FM oscillators using varactors. This derivation is based on the
widely applicable method of series expansion in terms of w(B,), where @ is the
radian frequency of oscillations and B, = U,/E,; is the ratio of modulating voltage
to an initial (bias) voltage on the varactor in the absence of modulation. The series
obtained below converge if B, < 1. Under the usual condition E,; — U, < Uy
where Uy, is the amplitude of the RF voltage at the varactor, these series always
converge. As can be demonstrated from the calculations, they converge quickly
enough for B, < 0.7, and therefore in subsequent analysis we need consider only
the first three members of the serics. In general the third harmonic is of great im-
portance in the case of S-shaped control characteristics. The control characteristics
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of most FM oscillators with varactors resemble a parabola and the fourth member
of the series is negligible as compared with the third member. This is demonstrated
below in an example of capacity coupling of the varactor to the resonant circuit
with Co =0.

The effect of RF voltages on varactor capacitance is initially neglected in
analysis of nonlinear distortions for the general case (where the oscillator circuits
with parasitic capacitance are as shown in Figure 9.1), as was assumed for the case
of large frequency changes. For the special case in which the circuits shown in
Figure 9.1 are reduced to a circuit with only the capacitance of the varactor, it will
be shown that this omission is quite acceptable.

9.2.1 Nonlinear Distortions for Capacitor Coupling of the Varactor to the
Oscillator Circuit

The expression for the natural radian frequency of the oscillator circuit shown in
Figure 9.1(a) is:

c+C,+C,
= (9.18)
L(CC,+C,C+C (C+Cy)
The capacitance of the varactor is represented as
C,=C,7 b =C, ! (9.19)
o, +E,+U,cosQ ¢ ,Y/1+[3Q cosQ, ¢

where C, =C /o /(¢ , +E,) is the capacitance of the varactor with no modula-

tion, B, = Un/(¢. + E,) is the relative amplitude of a control voltage, and Q,, is the
radian frequency of the modulating signal.

Substituting (9.19) in (9.18), decomposing the resulting expression in a power
series in BocosQ,f and restricting the series to three members, we obtain

0=0,(1+4 cosQ,t-4,cos’Q 1) (9.20)
where
_Bo a’
' 2y[(ab, +bd, +ad)+a, +d ](a, +b, +1)
and

Bha,? [2(a'b‘ +bd, +ad){(y+1)a, +b,)+ 2y} + 2(y=1Xa, +d,)+ 2y - Da> )]

8y’ [(a,b, +b,d, +ad,)+a, +d,] (a, +b, +1)’
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Here, o, is the oscillation frequency for the initial condition of no modulation (i.e.,
C; = Cy, a, = C/IC,, d; = Cy/C,,, and b, = C,/C,,). Utilizing the known formula
cos’Qt = (1 + c0s2€Q2)/2 and assuming that the nonlinear distortion coefficient K,

for the second harmonic is the ratio of coefficients for cos2Q),,t and cosQ,.t, we
find:

K, =0.54,/ 4, (9.21)

As the magnitude 4, from (9.20) is simply the relative frequency deviation
(i.e., 4; = Aw/wy), (9.21) can be written:

K, =0.5(4,/ A Ao/ ®,). (9.22)

Substituting in (9.22) the magnitudes 4, and 4,, we obtain the following depen-
dence of the nonlinear distortion coefficient of the second harmonic upon the rela-
tive frequency deviation Aw/®, and upon parameters of the circuit:

K - 2Aab, +bd, +ad)[(y+1)(a, +b,)+2y]+2(y - 1)a, +d,)+(2y-Da’
2 2
4a

5

N (9.23)

(o)

s

In the specific case where C —«, C, = 0, C, = 0 (i.e., for a;, >, b, = 0, and
d; = 0) we obtain from (9.23)

_2r-lae

K
: 4 o

(9.24)

From (9.23) and (9.24), it follows that for a given relative frequency deviation
Aw/w; the nonlinear distortion coefficient is minimum in the case where the ca-
pacitance of the varactor is the only capacitance of the oscillator circuit:

Konin = 0.75Aw/w;, for y = 2 (sharp p-n junction), and
Komin = 1.25A0/w; for y = 3 (smooth p-n junction).

For the special case in which Cy = 0 (i.e., for d; = 0), the fourth member of (9.20)
was obtained. This allows us to determine the nonlinear distortion coefficient for
the third harmonic:
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- K 3a} ~6a,AB +4B* {[A(2y~1)—b,(y +1)] (b, +1)+3b,4}
6 a,(a, +24B)

Ao
X_

(9.25)

(0]

$

where 4 = b(y+ 1) +y— 1, and B=a, + b;+ 1. For C— and C, = 0 (differently
than for a,— and b, = 0), it follows from (9.25) that

_4y-14o

K
} 6 o,

(9.26)

(i.e., the ratio Ky/K, is of the same order as the relative frequency deviation
Aw/eg). Table 9.1 shows the ratio (Ky/K;)/(A®w/wy), calculated for representative
values of a; and b,. From this table we can see that for C # oo, C, # 0 the ratio
(K3/Ky)/(Aw/wy) is increased, as contrasted to the case where the varactor is the
only capacitance of the oscillator circuit. However, for C — o and C, = 0 it is
possible to obtain a rather large relative frequency deviation Aw/w;. The presence
of the finite capacitance C and nonzero capacitance C, usually reduces the peak
value of deviation, especially in case of the varactor with smoothly varying p-n
junction. Therefore, in many conditions the nonlinear distortion coefficient of the
third harmonic is less by an order of magnitude that that of the second harmonic.

Table 9.1
Calculated Values of the Normalized Ratio of Nonlinear Distortion Coefficients

a—»0,b;=0 a,=1,b,=0 a0, by=1 a=1,b;=1
y=2 1.17 2.1 27 7.7
y=3 1.83 29 4.1 11.8

9.2.2 Nonlinear Distortions for Autoinductive Coupling of the Varactor to
the Oscillator Circuit

For analysis of nonlinear distortions in this case we find, as earlier, the expression
for the radian frequency of oscillations. For Figure 9.1(b)

1

o= 9.27)
JI(C, +p*C, + pC,)
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where p = Ly/L is the sensitivity coefficient of the varactor and capacitance C, in
the resonant circuit. Let us substitute (9.19) in (9.27) and decompose the resulting
expression as a power series in 3,,cosQ2,t. Considering three members of the se-
ries, we again obtain (9.2]) for the nonlinear distortion coefficient of the second
harmonic K, but in which the constants are now

_ B, 172

\ =5 5 and
2vd +pb +p

Bl pz[pzﬁ‘2v—1)+2(v+l (d;+p2bs)]
8y (ds +p’b, +pz)2

A,

where d; and b, have the same sense as earlier.

Given the expressions for 4; and 4,, with (9.22) we now establish the follow-
ing relation of the nonlinear distortion coefficient K, to the relative frequency de-
viation Aw/w, and parameters of the resonant circuit:

5 _ 2
_ Py 1)+2(yj1)(ds +pb,) Aw (9.28)
4p o

K,

5

Assuming in (9.28) p=1,d, =0, and b, = 0, (i.¢., assuming Cy = 0 and C, = 0), we
obtain again (9.26): K, = (2y — 1)Aw/4w; (i.e., we again find that for a given rela-
tive frequency deviation the nonlinear distortion coefficient is minimum in the
case where the varactor is the only capacitance of the oscillator circuit). For set
values of magnitudes d; and b,, the nonlinear distortion coefficient is reduced with
increase of the sensitivity coefficient p of the varactor in the oscillator circuit.

9.2.3  Nonlinear Distortions in the Case of a Single-Tuned Oscillator Cir-
cuit with Allowance for RF Voltage on the Varactor

We assume now that in the oscillator circuit of Figure 9.1 Co = 0, C, = 0, C—o,
and p = 1. In this case the two circuits degenerate into one composed only of a
series-connected inductor and varactor. Let us now take into account the influence
of an RF voltage on varactor capacitance. As in earlier consideration of the non-
linear oscillator control characteristic, we will confine the analysis to the case in
which this effect is most significant, namely where a varactor with sharp junction
(y=2) is used.

The expression of interest to us, for equivalent capacitance of the varactor,
can be obtained from (9.13) by substitution in the last term of E. for
E,+ UgpcosQ,t, and is
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U 2
Cy, =Cip @ 1+ ad (9.29)
o . +E +UqgcosQ ¢ 16\ ¢, +E, +UycosQ2 ¢

Using the known relationship B, = Ug/(¢. + E,), and also a = U /(9. + E.;), we
reduce (9.29) to the form

Cuy =C, [(1+B4 005Q,07 +(3/16)a” (1 +Bo cos Q,1)*? ] (9.30)

where, as earlier, C,, =C,,/®./(¢, +E,) is the capacitance of the varactor with

no modulation and disregarding any RF voltage.

We note that the amplitude of an RF voltage U,y on the varactor with FM is
normally included in a. However, we will subsequently approximate a as a con-
stant, considering that it is generally difficult to take these variations into account,
that it is possible to make these variations small by stabilizing the output voltage
amplitude, and that the result obtained has only qualitative value.

Having now substituted (9.30) in the formula for oscillator circuit frequency

o=1/, /LCW and considering only three members of the series in BocosQ2,?, we
obtain

=0, (+4,,c0sQ,1— 4, cos’Q,1)
By 1+(15/16)a’

4 =TI G168

38; [ 1+(35/16)a

32

4, = (1+(15/16)a )2}

1+(3/16)a> 1+ (3/16)d>

where @, = o1 + (3/ 16)a’1'? is the oscillator frequency for the case of no
modulation with allowance for influence of RF voltage on the capacitance of the
varactor.

Having taken advantage in this case of (9.22), in which 4,., and 4., now cor-
respond to 4, and 4,, using the expressions for 4., and 4,., we find the following
dependence between the nonlinear distortion coefficient K, and the relative fre-
quency deviation Aw/w,:

3|, [1+05160@* 146160 ] a0
4 [1+as/16)a* T ®s

K, = (9.31)
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Calculations using (9.31) demonstrate an acceptable level of error in determination
of the nonlinear distortion coefficient K, while disregarding the RF voltage at the
varactor, in the case where the varactor has a sharp p-n junction (y = 2) and is the
only capacitance of the oscillator circuit. For all reasonable values of a, the error is
an order less than the value K, = (3/4)Aw/w;,, from the formulas obtained earlier:
(9.23), (9.28), and from (9.31) with @ = 0. It also appears that in the case of the
varactor with smoothly varying junction this error will be even less.

93 LINEARIZATION OF DEPENDENCE OF OSCILLATOR
FREQUENCY ON CONTROL YVOLTAGE

It was demonstrated above that the oscillator control characteristic is nonlinear
when the frequency control voltage is applied directly to the varactor. The resuit is
the appearance of nonlinear distortions on the FM signal. In short-range FM radar,
nonlinearity of the control characteristic and nonlinear distortions of the FM signal
are often much less than when control voltage is applied directly to the varactor.
To avoid this situation, we can apply special correcting circuits (CC). In this case,
the control voltage E. is the input to the CC input, and an output voltage E,, is
applied to the varactor. Thus, the CC will convert a voltage E. to E,. in such a way
that the oscillator control characteristic (now understood as the dependence of
frequency fon a voltage E,, instead of on E,.) is nearly linear.

We will find the form of CC transforming characteristic E,. = ®(E,) that is
necessary for a strictly linear control characteristic. For this we need the depen-
dence of frequency fupon the varactor voltage E,., which can either be calculated
or obtained experimentally. Let us now take advantage of a rectangular coordinate
system (Figure 9.4), where on the ordinate we plot both the frequency f and the
voltage E,., and on the abscissa the voltage E,.. Not setting any plotting scale in the
figure, we select two arbitrary points, one of which corresponds to the initial value
E,;, and the other to the final value E of voltage E.. Let us draw a straight line

Ev, f
Ev

E.

Figure 9.4 Control characteristic {£_) and dependence E, (F,) for correction circuit.
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through points with coordinates (E, fuin), (Ecs, fmax), Where fon and fu., are the
minimum and maximum frequencies of the control characteristic. This will define
our straight-line control characteristic. Having now designated on verticals to the
abscissa at the point with values E,., applicable to frequencies f of the straight-line
control characteristics, intercrossed by these verticals, and having passed a curve
through them, we find the form of the required CC transforming characteristic
E, = ®(E).

Because the dependence of oscillator frequency on the varactor voltage in
single-tuned oscillators is represented in a rectangular reference system by an in-
creasing curve with decreasing slope in accordance with increase of voltage E,,
(Figure 9.2), the curve E,. = ®(E,) should always have increasing slope with in-
creasing voltage E, (Figure 9.4).

One of the possible simple CCs producing an optimum transforming charac-
teristic according to Figure 9.4 is the circuit shown in Figure 9.5. Its resistors are
chosen such that as E, increases, diode D, is turned on first, followed by diode D,,
and so forth. After tuming on diode D, a voltage E,. will appear with increasing
E,_, and turning on each subsequent diode will reduce the slope as the voltage E.
increases.

We will now obtain expressions that allow us at given points of a required
curve E,. = ®(E,) (continuous curve in Figure 9.6) to calculate the resistance of
CC resistors shown in Figure 9.5, and also to determine required limits to the
variation of E,. To simplify these expressions we make the assumption that the CC
diodes have indefinite resistance in the cutoff state and zero resistance in the con-
ducting state. For same purpose, we assume that the increments of the voltage E,
between points of conduction of diodes D and D,, diodes D, and Ds, and so forth,
and also between conduction of the diode D,, and the greatest value of a voltage E,
on the required curve E,. = ®(E,) are all equal.

With these assumptions, instead of the required transforming characteristic
E,.= ®(E,), only the characteristic appearing as a segmented line, shown in Figure
9.6 (dashed line), need be obtained. We also note that as the actual dependence of

+Eo- +
¢R1 ¢R2 Rn

E.0- ---
Dy D. D
Rot Roz Rom

—0 E,¢

Figure 9.5 Diode-resistive correction circuit.
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Figure 9.6 E,(E,) required for compensation and its segmented approximation with diode-resistive

currents in a diode on the applied voltage is smooth rather than as assumed above,
it is possible to obtain a rather smooth curve for E,. = ®(E_). This usually allows
us to closely approach the required oscillator control characteristic with few di-
odes in the CC.

Sometimes it is only possible to realize a CC that produces, instead of the de-
sired characteristic E,. = ®(E,.), the form E’,. = ¥(E,) displaced on the ordinate by
some additional magnitude E,qq (i.€., E,. = E,. + E,. ,4). The application of the
required varactor voltage is then obtained by subtraction of E,, .44 from the voltage
E. (Figure 9.7). We subsequently consider that adjustment of the CC can reshape
the performance E,. = ¥(E,).

We note that in the CC shown on Figure 9.5 all resistors Ry, Roz, ... Rom are
equal. However, one of them, as will be shown later, should differ from others. Let
us consider as those the resistance Ry,,.

We now give to voltages E. and E, applicable to opening of diodes D, D,,

.. D, the subscripts 1, 2 ... m (apparently, E, = E. and E; = E,;) and enter
identifications: Ry = Ry = ... Ropm.1y = Ro, Rom = IRy (I is a positive number),
R,+ Ry, =R », RYR, = Ym RY/R=y,and E/ E\ ;s — 1 =a,, wheren=1,2, ... m.

It is apparent that for output voltage £, at which diode D is at the boundary

between conducting and open states and all remaining diodes are closed, we obtain
. R

S E
U R+1/Q/R +V/ R +..1/R))

which can be easily changed to the form
y=A+ay, (9.32)

where A =a(, + Y2+ ... T Ym-1)-



218 Fundamentals of Short-Range FM Radar

Figure 9.7 E, and E,, versus control voltage.

For output voltage E,. applicable to the open state of all diodes, and also to
the case when the diode D,, is at the boundary between conducting and open states
(i.e., Eyc = E,m), We can write

£ - R
* R+[R,/(m-D]R,, /[R, (m-)+R,,]

(E.~E)

where EY is the voltage on the diode at which it begins to conduct. From here, as-
suming that

ly

———— =B 9.33
1+i(m-1) ©:33)
we obtain the following two expressions:
E, ——1—(E —-E)) 9.34)
vem 1+B em d/» ot
E, ——I—(E -E) 9.35)
ek 1+B ck d’: N

The input voltage of the CC, applicable to the boundary between open and con-

ducting states of the arbitrary diode, apparently exceeds by E; the voltage at a

point of connection of the diode to resistors R, and Ry,. We may thus write:
E,=(E-E,)R, /R +E, +E,

from which the equation system follows:
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E,=E (ax +D+E;,
.............. o , ©.36)
Ec(m—l) = Evc(m—]) (@ A TD+E,,
E, =E,(ay,+D+E,
Substituting the last equation of system (9.36) into (9.34), we obtain
Xn =B/(a,) (9.37)
On the basis of accepting the above condition, that
Eck _Ecm = Erm —Ec(m-l) .= EcZ —Ecl
we can write a following system cf equalities:
Eck = Ecm +—1—(Ecm ~Ecl) = _’n*_Ecm —J‘Ecl’
m—1 m-1 m-1
l m-1 1
E =E +—(E  ~-E,)=——E -——E,,
ck cm m_z( cim 52) m_z cm m‘_z c2 (938)
Eclc = Ecm + (Ecm _Ecl m ~])) = 2Ecm - Ec(m—l)'
Substituting now (9.38) into (9.35) and using (9.36) and (9.37), we obtain
% = 1 @:~M(B+l)—l ,
a, be
1| (m—-Dc—(m-2)
= | B+ -1,
1=y { bye B+D (9.39)
1 {2¢c-1
Xm—\ :—}: (B 1)—1}’
1 | Oni€
where bn = E»cn/ E:/cma c= E‘vcm/ Ekvck-
Solving jointly (9.32), (9.33). and (9.37), we find for magnitude /
(,:B(al/am—l) (9.40)

B(m—1)- 4
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Now we will obtain the formula for selection of the voltage £, ,45. Observing
the condition E., — E; > E’, (this is necessary, following from the first equation of
system (9.36), because to E,, ~ E}; = E,, there corresponds a case x; = 0, i.e.,
R, — «), but, as E.; — E, — m(E_, — E_,), this condition can be represented as

E,=m(E,-E,)-E,>E., (9.41)
But from (9.34) and (9.35) it follows that
E

By =5 (Em ~E )+ Ey (9.42)

vem

Excluding the voltages E,; from (9.41) and (9.42), we obtain:

*

E
E, 2 o ——+E, (9.43)
m-(m-1)E_/E,_,

or after a substitution E:!cl = Evcl + Evc add» E‘vcm = Evcm + Evc add» and E‘vck = Evck +
Evcadd,

2 (Evcl +Ewadd)(Evcm +Evadd) +E; (944)
m(E, . +E )~ m-I)E_ +E, .)

The inequality (9.44) applies when there is a positive common denominator in
its right part. Otherwise the sign > changes to <. But as the voltage E.,, can only be
positive, the second case is not of interest. A condition for a positive denominator
is the inequality:

E ,2(m-)E,  —mE

o (9.45)
from which it follows that with (m — 1)E,, — mE,,, > 0 there can be realized only
the transforming characteristic E;. = W(E,), obtained by offset of the required
transforming characteristic E,. = W(E,) on the ordinate by E, .44, nonzero and de-
fined by the inequality (9.45).

It is desirable that the voltage E.,, not be too large. Analysis of (9.44) demon-

strates that the least possible value of a voltage E,, is reached at magnitude E, ,4q,
defined by

Eyya =M +|M* +(E,, +E,,)M +E,E,, (9.46)

where M= (m — 1)E, . — mE,,.
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9.4 CALCULATION OF DIODE-RESISTIVE CORRECTION
CIRCUITS

The expressions obtained in Section 9.3 suggest the following procedure for calcu-
lation of the correction circuit shown in Figure 9.5:

1. For a calculated or experimentally determined oscillator control charac-
teristic F(£,.), we find the shape of the transforming characteristic E, = ®(E,,)
(i-e., we create an arbitrary plotting scale on the abscissa) providing a linear de-

pendence f(E.).

2. Based on tolerance requirements for linearization of the control
characteristic f(E,), we choose a number of diodes m used in the CC.

3. From the transforming characteristic £, = ®(E,.) of step 1, we determine
voltages E,.1, Ev, ... Evemn, Ever

4. Knowing the number of diodes m and voltages E, ., E..3, ... Eyemy Ever, W€
find from (9.46) the value F.. ,4q.

5- WC ﬁnd the VOltageS Eavclx = Evcl + Evc adds E:/c2 = Ech + Evn add»
Etzcm = Eyem + E,; 244, and E:'ck =E, ¢t Ey ada-

6. Substituting in the right side of (9.43) values m, £, E,c3, ... Eycn, and
E,., we find the least possible voltage E., mn and select a voltage E.,, slightly
greater than this. Thus, the inequality E., > E,., will apply and the resistance R,
will have a final value that will permit its implementation as a variable (as well as
resistance Ry, R,, ... R,,). This makes possible alignment of the CC at some stage
of setup, the need for which can arise after its realization.

7. Using
Evck ’ ’
Eck = E (Ecm _Ed)+Ed

vem

which follows from (9.34) and (9.35), we calculate a voltage E;.

8. Using the expression E,| = E, — m(E., — E..,), we define the voltage E.,.

9. We select a voltage E, proceeding from the condition E > E, and from
available possibilities.

10. We calculate magnitudes ay, as, ... @y, (@, = E/E,.;, — 1), by, by, ... by
(bn = Evcn/Evcm)a and c (C = Evcm/E\. :k)~

11. Using B = (E_;, — EQ/E,. - 1, from (9.35), we find the value of B.
12. Using (9.39), we find the values ¥, X2, - -- Ym-1-

13. We calculate 4 = a;(y1, 25 --- Am-1)-

14. Using (9.40), we calculate /.
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15. Using (9.37) and (9.32), we find values Y.

16. Having set the value of resistance R, we calculate resistances Ry = R and
ROm = lRo

17. We calculate magnitudes R, = Ry/y1, Ry = Ro/Y2 ..- Rn = Ry/Y and find
resistance R; = R} — Ry, Rt = Ry— Ro, Ry = R, — Rom.

Having set the value R (step 16), we note that for greater R the values of resis-
tance of all other resistors of the CC will be larger. Therefore, for greater R there
will be larger input resistance to the CC as well as a higher voltage source E,, and
accordingly the power consumed by it will be less. There will be also less power
consumed in this case from the source E. It is seen that for larger values of resis-
tance in the CC, its band of operational frequencies is reduced because of the pres-
ence at its output of the varactor capacitance (for direct connection to the CC) or
the input capacitance of the following stage. Thus, it is necessary to take into
consideration possible requirements for quick variations of E...

In case of a large E,, the desired values of the voltage £ and the input volt-
ages E_, obtained from CC calculation can become so large that deriving them for
standard oscillators becomes inconvenient. For example, to obtain a desired value
of E_, may require an amplifier with a large linear dynamic range and accordingly
a very large supply voltage not commonly used in modern electronic components
(such as transistors, integrated circuits). In such a situation, it is convenient to re-
peat the CC calculation starting from new values of output voltage obtained by
reducing E,.q, ... E, by a factor K. The new calculated values E,, .44, and accord-
ingly, E,.1, E\, ... Eyen will appear reduced by X and the resulting value of the
voltage E,, for a suitable choice of K will be more easily realized. The deriving of
required voltages on the oscillator varactor should in this case be realized by con-
necting an amplifier with gain K to the CC output and as before, reducing the volt-
age E, .4 [€.g., application of a voltage E, .4 to the second side of the varactor
(Figure 9.7)]. The requirements on the voltage E, the transforming characteristic
of the amplifier hooked up to CC output, and its supply voltage thus can be main-
tained within practical limits.

We will illustrate this with a specific example. In an actual oscillator, tuning
from 730 MHz to 860 MHz was carried out by variation of the varactor control
voltage between 3.0V and 36.0V. Calculated for a CC with four diodes, the values
of voltages were found as: E,.; = 3.0V, E,, = 7.0V, E,; = 13.5V, E, .4 = 22.5V,
and E, ;= 36.0V.

We find from step 4 of the proposed method of calculation the following
magnitudes: M=(m - 1)E,, — mE,.,= (4 - 1)36 — 4 x22.5=18V.

From step 5 we find £}, = 50.2V, E,, = 54.2V, E} ;3 = 69.7V, E",.s = 69.7V,
and E},;, = 83.2V.

We find the smallest value Eq4 pin = 119.2V + Ej; and set it at E4 = 122V,

Finally, from steps 7 and 8 we calculate extreme values of the voltage E,,
which is to be sent to the CC input; E, = 145.6V + Ejand E.; = 51.2V + E);.
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Thus, for supplying a voltage £, directly to the CC input, the voltage £ must
exceed 145.6V + E; and thus the amplifier output with a linear transforming char-
acteristic should be not smaller than 145.6V + E} (on a reinforced voltage). An
even larger supply voltage is necessary for generating that input voltage.

A reduction of the voltages E.., and E,; by a factor of five (K = 5) will give
the following results: E\.; = E,./K = 0.6V, E,; = E,)JK = 1.4V, E, s = E,u/K =
2.9V, Eyy = E, /K = 4.5V, Eo . = E,./K = 7.2V. Having repeated the calculation
and now substituting in the formulas new values E;_,, instead of E,,,, we find E_4 min
= 23.6V + Ej. We accept E.4 = 25V + Ej;. Thus, we obtain: E; = 29.9V + E,
E =108V +E],

So, in the second case the vcltage E should exceed only 29.9V + Ej; and re-
quirements on the amplifiers (or amplifier, as the deriving of CC input voltage in
this case should not require the additional amplifier) appear much more reason-
able. Apparently, the requirement for a linear transforming characteristic can be
met with an output voltage 36V, and the supply voltage for the amplifier can be
selected near 50V (convenient and equal to the supply voltage of amplifiers).

9.5 DECREASING THE NONLINEAR DISTORTION OF THE FM
SIGNAL WITH A CORRECTING SIGNAL

The approach outlined in the previous paragraph for linearization of oscillation
frequency with control voltage can be used as well for reduction of nonlinear dis-
tortions of the FM modulating signal. However, for small frequency deviations and
high frequencies (typical for short-range radar), other methods may be better for
this purpose. The first of these methods is use of a circuit with a diode compensa-
tor for nonlinear distortions, shown in Figure 9.8. In this circuit the compensation
diode D. is in its open state for anv value of modulating voltage. Thus, for sinusoi-
dal modulation, an alternating voltage with unequal amplitudes of half-waves will
appear at resistance R, at the expeunse of nonlinearity of the volt-ampere character-
istic of the diode. The same voltage will be applied to the varactor (a circuit

LR Rs

Compensator To oscillator

o]

Modulator

Figure 9.8 Circuit of modulator with dicde compensator for nonlinear distortions.
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composed of the capacitor and an inductor, between which is coupled resistor R,
and the varactor, which should have rather low impedance at modulation frequen-
cies). It is clear that given the polarity of the compensating diode and varactor
shown in Figure 9.8, a positive half-wave of alternating varactor voltage corre-
sponds to a reduction in varactor capacitance, and therefore an increase in oscilla-
tor frequency. Taking into consideration the form of dependence of the oscillator
frequency on the varactor voltage (Figure 9.2), it becomes clear that feeding the
modulating signal to the varactor according to the circuit of Figure 9.8 will allow
reduction of nonlinear distortions in the FM signal. The best compensation of
nonlinear distortions in the actual circuit is ensured with an appropriate selection
of the compensating diode and resistors R; and R,.

The nonlinearity of the transforming characteristic of transistors can also be
used for reduction of nonlinear distortions of the modulating signal. Apparently, it
is possible to offer different alternatives of transistor networks for compensation of
modulating signal nonlinear distortions. But a necessary condition of operation of
all such circuits is the forming of a sinusoidal modulating signal of alternating
voltage with unequal amplitudes of half-waves and its application to the varactor
so that the larger half-wave leads to a reduction of varactor capacitance.

Two circuits for compensation of nonlinear distortions are shown in Fig-
ure 9.9. In the circuit of Figure 9.9(a) the compensating transistor is included in
the preamplifier for the modulating voltage. In the second circuit, Figure 9.9(b), it
acts as an active component of an emitter follower, through which the modulating

To oscilator

" T

—0 +E

R; R1
To oscillator

Figure 9.9 Circuit for diode-transistor modulator (a) with amplification and (b) without amplifica-
tion of the modulating signal.
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voltages are applied to the varactor of the FM oscillator. The alignments of both
circuits to achieve minimum nonlinear distortions of the signal are conveniently
realized by variation of the emitter current of the transistors, varying the resistors
1n emitter circuit.

Figure 9.10 shows two possibilities for compensation of nonlinear signal dis-
tortions by applying varactors as modulators in FM oscillators. The first uses the
varactor (or varactors) in an intermediate oscillator circuit, the resonance fre-
quency f; of which is lower than oscillator frequency f;. The linearity of the control
characteristic is thus regulated by variation of tuning of an intermediate oscillator
circuit at frequency f;. The other method of linearization is to derive the required
FM oscillations by offsetting the FM oscillator frequency and use of a supplemen-
tary oscillator (local oscillator). Thus, at the output of the mixer the oscillation
with the difference frequency is selected. The principle of compensation of nonlin-
ear signal distortions in this case 1s quite obvious. The frequency £, of the FM os-
cillator is made much greater than the required frequency; for example, n times
greater. Therefore, the maximum relative frequency deviation Af/f; of these oscil-
lations should be » times less than the required relative frequency deviation. This,
as follows from (9.23) and (9.28), will lead to an n-fold decrease in nonlinear dis-
tortions as compared with conventional oscillators. This decrease will be main-
tained after conversion of generated FM oscillations by the mixer to the required
band of frequencies (i.e., after decreasing the frequency f; by the factor n).

fo £, l—o Um

Ictvm

Figure 9.10 Modulator circuit with detuned intermediate oscillator circuit.






Chapter 10

Theory of the Single-Tuned Transistor
Autodyne and Optimization of Its Modes

Transistor autodynes, as discussed above, are the combined microwave units
which, along with generation of a radiating signal (including FM signals), perform
the initial processing of a reflected signal accepted by the common antenna and
carrying the information on target speed and distance. The basic circuit of the sin-
gle-tuned autodyne, executed, for example, using Klapp’s circuit with external
phasing capacity C, and varicap (3, is shown in Figure 10.1. High-frequency ele-
ments (Cy, C,, C;, L) form Klapp's circuit, and all active losses in the elements of
selective system and in the antenna (losses on radiation) are expressed by an
equivalent active conductivity G ;. By virtue of the fact that in the microwave

1
] L -T- G Doppler
I signal
| 1' o
| Cs D,
Cy L
LE
D,
Gss [] Cs ’!
£ R ]
Uss 7
e
| c Ere Gl
; == R, R. T~
L YT

Figure 10.1 Basic circuit of Klapp's singie-tuned transistor FM autodyne.
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range a generator feedback circuit shifts the signal phase (i.e., the feedback fac-

tork s is a complex value), the phasing capacitance C, is usually added to the cir-
cuit of the microwave oscillator, combining with transistor input conductivity the
additional phase shift and improving the phasing conditions at the moment of self-
excited oscillation and the stability of output frequency in the steady-state mode.

In the circuit there is an emitter automatic bias chain R,, C, that is used for
mode stabilization of the direct current and from which the autodyne signal Eg, is
output. Apart from this, the output of the autodyne signal as modulation of oscilla-
tion amplitude is formed by the peak detector D,, D,, R, and Cs.

10.1 ABBREVIATED DIFFERENTIAL EQUATIONS FOR THE
SINGLE-TUNED TRANSISTOR AUTODYNE

We will express the abbreviated differential equations on the basis of the general

abbreviated equation (7.3). For the case in which auxiliary control circuits are ab-
sent and a single emitter autobias chain is present, the equations become:

Y(U,U,,0,0,E)U, e =Y, (p+ jAU, e + Lt

U,e” = N(U,E)U e (10.1)
FEACEI
Y,(p)

This system represents five valid equations, as the first two equations are complex.
The equations define the behavior of five unknown functions of the problem: U,
Uss, @, ¢, and E. The equations are differential, and their order is determined, as in
Chapter 6, by the order of the symbolic admittances Y, and Y..

Nonlinear complex functions Y and N are determined, according to [1, 2], by
the parameters & and y, of the high-frequency circuit and by complex y-parameters
of the transistor, averaged on the first harmonic of signals, which depend on the
mode:

N(EU)=UulU=—1/kp =215 %e 10.2
( ) ” ylZ_kyo ( )
%(U,E) — (yZI _kyO)(ylZ —kyc) - _kaG (10.3)

Yutys
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We can see that if it is necessary to take into account the nonlinearity (dependence
on operating point) of all four averaged parameters of the transistor, y;, where
ij =1, 2, then both functions N and Y appear dependent on the operating point,
and the analysis becomes complicated. If the input conductivity y,; and the con-
ductivity of the return reaction y;; may be neglected, then N =-1/k =const and
the analysis becomes simpler.

By virtue of sharp selectivity of the autodyne oscillatory system, the voltages
u; and u are approximately sinuso:dal;

u_(1) = Re{L‘n (exp(j[o,t +¢(t)])} (10.4)

u(t) = Re{l/(t)exp( j[o ,,z+¢(z)])} (10.5)

where wy, is the frequency of free cscillations of the autodyne.

The received reflected signal is delayed relative to that radiated by a time
1 =2r/c, where r is the distance between the target and the autodyne and ¢ is the
speed of light:

() = Re{KUﬂ (t ~Dexp( o, (-0 +o¢-0)])} (10.6)

Here, k is the factor accounting for reduction of the microwave signal voltage be-
tween transmission and reception. For the definition of k consider the ratio con-
necting the power P,,. of the received signal, the active component of the antenna
input conductivity G, and the amplitude I, of the received current:
La= J8P, .G, . Taking into account that the power P, is proportional to radi-

ated power P, ;.

Prec = Xﬂad =XU2G /2

A

we obtain: /, , =2U G \/i ; that 13,

55 88

K=2G,\1 (10.7)

Factor y in the case of a point target varies inversely as the fourth power of range »

[3]:

ker:an;:lc
= (10.8)



230 Fundamentals of Short-Range FM Radar

and in the case of a distributed object inversely as the square of r:

_ A5G FuNg

where A is the wavelength in free space, G,,, is antenna power gain, F,,, is a func-
tion of antenna orientation,  the radar cross section, and N, = 0.3 to 1 is the factor
accounting for losses in reflection from a distributed object.

We will now enter the frequency difference A = w; — @, between the fre-
quency of free fluctuations ; and the carrier frequency w,, and we will copy ex-
pressions for complex amplitudes of signals (10.4) - (10.6) as follows:

U =U, (tyexp(j[M+o()]), U=U() exp(j[M+0()])  (10.10)

}reﬂ =KUss(t—'c)exp(jI:)»t—oafrr+(p(t—t):') (10.11)

Let us now substitute (10.10) and (10.11) in (10.1), and having applied the
theorem of displacement for operational fractional-rational functions [4], we
obtain:

U, .e” = N(E,U)Ue’ (10.12)

Y (p+ AU, exp(jo) = Y(E,U)U,, exp(jo)

+KUm(t~t)exp(j[_mﬁt+(p(t_1)]) (10.13)

If automatic bias is used in the autodyne then the system (10.12) - (10.13) for
the high-frequency part of the circuit must be augmented by the equation for the
bias chain, which is usually that for a single RC chain (as in Figure 10.1):

7% \E_J(EU)R =E,, (10.14)

where T, = R,C, is the time constant of the bias circuit, and J, is a constant compo-
nent of emitter current, depending on the operating point.

The system of the equations (10.12) - (10.14) forms the system of general ab-
breviated equations of an.autodyne, describing with a consistent approach all the
processes involved. Equation (10.13) includes the signal delay that predetermines
the basic complexity of the autodyne systems analysis.

At the same time, estimation using (10.7) - (10.9) shows that in all practically
important cases the parameter x is small (i.e., Len = xUy = 8U,;) and as a conse-
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quence an inequality 1t << T, applies, where T, is the time constant describing
duration of the synchronization process influencing the generator of a signal with
amplitude /4. This means that for a delay t varying slowly as a function of time,
Us(t — 1) and (¢ — 1) can be neglected (i.e., we may consider Uy(t — 1) = Uy(f)
and @(7 — 1) ~ ¢(?)). In this case the subsequent analysis becomes simpler.

10.2 LINEARIZED DIFFERENTIAL EQUATIONS OF AUTODYNES
FOR SMALL REFLECTED SIGNALS

In actual short-range radar systems the level of the reflected signal appears quite
weak, in spite of the fact that the target range is rather small. If the received signal
1s entirely absent an autodyne mode is characterized uniquely by values
U, U° E°, ¢°, ¢° which are defined by the equations of the steady-state mode
(i.e., by the abbreviated equations in which the operator p is zero). In the case of
weak reflected signals (i.e., for /,.s = 3U;G,;) we can assume that the variations of

the steady-state mode resulting from the reflected signal (i.c., the autodyne signal)
are rather small:

U,=Ul+E, U=U"+n, E=E"+e, ¢=¢' +a, $=9" +¢

We will expand nonlinear functions U,e®, NUe*, and YU,.¢* in Taylor’s se-
ries for powers of the small deviations and reject terms above the first order of
smallness (i.e., we will linearize the equations):

Jo _ 0 0 o e 70 =
U,e* =U_e”® +e (E,+]Ussa),(x-g

{ 0 0
NU =N°U° +| N°+U°%];7] jnw""’w g
A‘\

OFE
0 0

YU e = YU e’ +e* '[Y°§+U:°x a—Y—n+U:°s or e+,jYUla
| aU O

Having substituted these decompositions in system (10.12) - (10.13) in view
of the equations of the steady-state mode, we obtain a system of linearized high-
frequency equations:

oY° oY°
Y(p+ W)=Y |e-U —n-=-U"° €
a4 )= J6-U, ——n-Uy — 10.15)

+jUS Yu(p+jk)—Y°]a=I,eﬂ exp(—jmﬁr)
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oN°®
-N°(A+n°)n-U°
g ( n 3E

£=0 (10.16)

where n = (U/N)(ON/OU) is a function not equal to zero if the feedback factor of
the generator k5 depends on the mode. If autobias is used in the autodyne, one
more linearized equation is added to (10.15) - (10.16):

0 0
Z‘gnjL{anEi +Ye(p)}s=0 (10.17)

We will consider as a simplification the case in which the feedback factor
does not depend on the operating point, and write for this case the linearized equa-
tions in matrix form:

v L . [x (p,?\.)—B]U
ou OE im n I kcoso,T
8B 8B .
v U [Ym(p,x)—G]U Xle| = —Imﬂkzmmﬁt (10.18)
&, @
£ £+Y 0
U OE ()

where G = ReY, B = ImY, Y,.(p,A) = ReY(p + jA), Yin(p,A) = Im(p + j>), and all
functions of the regime are calculated at a point of the autonomous mode (the in-
dex “0” of functions is omitted for simplicity).

Using (10.18) it is possible to analyze the influence of the received signal on
the autodyne and to establish a relationship between the output signal, the input
amplitude 7,4, and the autodyne parameters. For this purpose we must find under
Kramer’s formulas the operational expressions for increments of oscillation ampli-
tude, bias voltage, and phase:

N=A,/A, e=A/A, o =A /A (10.19)

and then proceed to the originals (required functions of time). Here, A is a charac-
teristic determinant of system (10.18), and A; (i = 1, a, €) is a determinant formed
from A by replacement of the column made of factors at a required variation i, by
the column consisting of functions images in the right part of (10.18). Acting in
the specified way, it is easy to determine transfer factors of an autodyne for any
variation n,a., resulting from /.
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10.3 EQUIVALENT CIRCUITS OF AUTODYNES FOR SMALL
REFLECTED SIGNALS

We may use, as the useful signal in an autodyne, the deviation of any parameter
(amplitude, frequency, etc.) from the stationary value, caused by external influ-
ence. In short-range radar autodyne systems this may be an increment of a high-
frequency voltage appearing at the peak detector or an increment of current in any
of the active element electrodes.

For designing a method of low-frequency signal processing and a choice of
detection parameters we must know the form (or spectral structure) of the auto-
dyne output voltage. For this purpose it is necessary to calculate increments n and
o of the amplitude and the phase of the voltage u(f). We will write the equations
determining these increments, having excluded from (10.18) an increment €:

Y (pm+ Y (p)UCa = I gkcoso,t

(10.20)
Y, (p+Y,(p)U'o = =1, Gksinw,t
where
oG
Y (p) =Y, (p,2) -G’ -U"° @[l -W(p)]
oB°
Y, =Y (p,A)-B' -U"—[1-w
2(P) =Y, (p, k) aU[ ()]
10.21
Y,(p)=B°-Y,(p.A), Yn(p)=Y,(p,h)~G" (10.21)
9,
W(p)= ol , cosezw_E
Ve Ly (p) o8
oE ‘

and where E’ is the bias voltage at which the collector current of the transistor be-
gins to flow (the cutoff voltage).

The system of equations (10).20) characterizes the linear two-port network
shown in Figure 10.2, with parameters Y; on which the external currents
Legkcoswst and —1, sksinwst operate, causing the voltages m and U« at the input
and output of the two-port network.

We will note that equality to »ero of a determinant

11(P)Yy: (p) - Y51 (P12 (p) =0 (10.22)

determines the characteristic equation of the system describing local stability of
single-frequency oscillations in the transistor generator (Chapter 6).
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lent COS W4T -Y12 Iren SIN Wi T
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Figure 10.2 The equivalent small-signal circuit of single-tuned autodyne for calculation of
increments.

We will consider some special cases of expressions (10.21). If the active ele-
ment of the generator is inertialess at the carrier frequency (for example, an elec-
tronic lamp or a field-effect transistor at moderately high frequencies), then B =0,
0B/oU = 0, and factors Y; become:

6G°
Yn(P):Yre(P,)»)“GO —UOE[I—W(p)] (1023)
Y, =%, =Y, (p.A), Y,=Y.(p,M)-G

For an autodyne using an inertialess two-pole active element with fixed autobias
(Y, - o and W(p) = 0), the expressions for ¥; become even more simpler:

o 6G°
ou (10.24)
Yy =-%, =Y, (N, Y=Y (p,M)-G

Y, =%, (p,\)-G"-U

The application of linearized equivalent circuits significantly simplifies the
analysis of specific autodynes with small reflected signals and allows us to estab-
lish some of their common properties.

104 THE FORM AND SPECTRUM OF THE OUTPUT SIGNAL OF A
SINGLE-TUNED TRANSISTOR AUTODYNE

In this section we will obtain in an obvious form the expressions in time for ampli-
tude and frequency of oscillations of the single-tuned transistor autodyne and ana-
lyze the spectrum of the output signal. We will assume a chain of autobias for the
most common case as inertial, and neglect the internal autodyne noise.

For the single-tuned case Y, (p) = G, (1 + pT), where G, is the active conduc-
tivity of the selective system at resonance, 7 = 2/wod is the time constant of the
loop, and & is its attenuation. In the case considered, the abbreviated differential
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equations of the autodyne are obtained from the general equations (10.12) -
(10.14):

G, [1+(p+ W)U, exp(jo) = YU, E)U,, exp( jo) (10.25)

+1n,ﬂ exp(—j(o/rt+ j(p)

U,, exp(jo) = NU,E exp( j6) (10.26)
EF;:EM:_E“J,;(U»E)RE (10.27)
4

We will express these five equations in an obvious form:

dU (’ E Ire
T 55 +Uu l*g("’“’)‘ :—ﬂCOS(D/,.T9 U;_r =NU
d G G

55 55

!
1u, 40y, |- BeB) |t gy ®,T (10.28)
dt GSJ GJS

E
r% g

< dr inix—E_“ﬂn(U’E)Re’ (P=<PN(U,E)+¢

where @y and N are the argument and magnitude of the complex function N.

This system of equations (10.28) describes the autodyne mode of the single-
tuned circuit with any amplitude of reflected signal. For small reflected signals, the
linearized equations may be obtained from (10.18) or on the basis of the linearized
equivalent circuits of Figure 10.2, wn which for our case

0 0G° 1=y + pT; .

Y,(p)=G, T—U—————,——, Y, =0
v 14 oU 14 pT. 12 (10.29)
OB” 1-y+ pT!
Yu(p)=-U'—=-—-"¢: ¥, (p)=pIG
n(p) aU 1+p7;’ 22(1’) J 248
where 7T'= ___Tf__ is the normalized autobias time constant, and
* 1+R,(0J,/8E)
_ 0G/oE aJ,/1ou 1 aJ,/oU

y= = — e = 1s the factor deter-
0G/oU o, /1PE+1/ K, cosB dJ,/CE+1/R,

mined by the slope of the cutoff and bias diagrams at a stationary point (Section
6.3).
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Let us assume further that the target moves towards the autodyne antenna at a con-
stant speed v (i.e., ¥ = vt and 1t = 2r/c = 2 vt/c). Then

05T = 02vt/c) = Qpt

where Qp is the Doppler frequency. Now from (10.29) we finally obtain the lin-
earized equations:

Lgk/ G,
U 6
G, aU

d*n dn
T’I;'—+(T'+Te’)-2—+(l—y)n =—
t

3 (cosQDt—QDTe’sinQDt) (10.30)

d’a. da 8B/8U 8B/dU _, dn
TTU —+TU—+ 1- + T —
4 x Tociou O o600 ©ar
1 kIG
refl S . '
=—__—[j—_€_GS_(S“‘QDt+QDTLCOSQDt)

G, U

(10.31)

where 7' = T/[Gl Z—g) is the normalized selective system time constant.

55

Now the final expression for the signal will be determined following the solu-
tion of (10.30) - (10.31) and will become:

u(®) =[U° +n(®) Jcos| o, +¢" +a(t)] (10.32)

We shall consider (10.30) whose right-hand side has the form:

Lak/G, ')
—E—a_G- 1+(QDT;) cos(Q ¢ -¥)
G oU

ss

where ¥, = arctan(2p77). Then the solution (10.30) will be written as the sum of a
free and a forced component:

(I 1k ! G\1+(Q,T))? cos(Qpt +m—"¥, —F,)

w0 =Ce M +c, e’ 4

2
w16, )(6G/6U)\/|:1 —y-QTT | + Q'+ 1))’
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where o, and o, are the roots of the characteristic equation describing local
stability,

C, and C; are constants of integration, and
QT +T")

¥, =arctan Sy
1-y-QyTT,

If the independent mode is steady (only in this case it is meaningful to speak
about an autodyne mode) free components of the solution decay, and the forced
component represents the autodyne signal with a voltage:

() = Heos(Qpr +¥,) (10.33)

where the phase ¥, = n —¥, ~'¥,, and the amplitude is determined from

(I k! G )J1+(Q,T))

= (10.34)

Y9G Jo-y-2rT) +0 (14T
[

We will now address the definition of the autodyne signal with phase a(f), for
which we shall consider (10.31), the right-hand side of which, after finding of a
signal n(#), will become:

Acos(Qut+'\¥Y,) + B, silu(QDt+\I’n)+CsinQDt+DcosQDt (10.35)

where

oBIOU . oBIAU . _ L,k/G,
A=- -y, B =21 o1y Cc=_tt s
oG v T B s T U 3G
G. oU

Now we will transform the right-hand side of (10.31) to the form

, D=CQ,T’

A cos(Q,t B,
cos P

where 4, = Acos'¥, + Bisin'¥, + D. tanP = Ay)/A(, Ay = —Asin¥ + Bicos'¥, + C.
Free components of the solution a(f) decay, and the forced component (the
autodyne signal) becomes:

a(f) = acos(Qt+\¥ ) (10.36)
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41U
QDT’\/E- (Q,T)* cosP

Now it is possible to find the expression for frequency of the autodyne oscilla-
tions:

where ¥, =n-B-¥,, a=

Jr(A1 U)cos(Qpt+'¥ )

T' 1+ (Q,T))* cosP

Thus, for an object moving with constant speed, the increments of amplitude
and oscillation frequency (autodyne signals) are sinusoidal functions of time at the
Doppler frequency. We will now determine the spectrum of the generated signal of
the autodyne, having taken advantage of (10.33) and (10.36):

o)=w, (10.37)

u(t) = U° [ 1+my cos(Qpt +¥,) Jcos[ @, +¢° +acos(@,t +¥,) | (10.38)

where m,, =71/U° is the amplitude modulation index.

As we can see, the high-frequency signal of the autodyne represents an oscil-
lation, simultaneously modulated in amplitude and phase, and the frequencies of
modulation are equal to the Doppler frequency. For an exact definition of spectral
components we expand u(?) in a Fourier series and obtain, assuming for simplicity
Y, =0=0,¥,=n/2:

u®) =03 {7, @[1+(m, /8)n]eoso, +12,)}  (1039)

n=—w

where J, (o) is the Bessel function of the first kind.

From this expression we can see that the spectrum of the output signal of the
autodyne is asymmetrical about the carrier frequency (i.e., amplitudes of the com-
ponents with frequencies oz + nQp and oz — nQp are unequal).

If the maximal phase deviation & is small, the decomposition into sine wave
components (10.39) becomes simpler, as the Bessel functions of an order greater
than unity are negligible. In this case the spectrum of the autodyne signal contains
five components:

u(®)/U° = J, (@) cos @t +[ J, (&) +myJ, (@) /2 ]cos(e,, +€2,)t

+[mUJO (&)/Z—J,(&):Icos(mﬁ Q)¢ (10.40)

J,(a Ji(@
+ Lulid®) (2) cos(w, +2Q,)t - ’_”g_zlﬁzcos(mﬁ —2Qp)
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If both modulation indices are small (i.e., (&) << 1, my<< 1), then it is possi-
ble to neglect the harmonics with frequencies wg + 2Qp, and the three remaining
components of the spectrum will become:

m, —a

u(t)/U°=cosmbﬁt+m—‘/;ﬁcos(mﬁ+QD)t+ cos(mﬁ_—QD)t (10.41)

From (10.41) it follows that in this case the amplitudes of spectral sidebands
differ from each other in amplitude by o .

So, we have established that the spectrum of the signal at the autodyne genera-
tor output contains sinusoidal corponents shifted by nQp, and is asymmetrical
about the frequency of free oscillations. Asymmetry of the spectrum indicates the
presence of amplitude and phase modulation simultaneously. Therefore, autodyne
signal processing can be performe either by peak methods (as is usually done), or
by phase.

We will now discuss what occurs in an autodyne with complex selective sys-
tem and autobias circuits. In this case the order of the equations determining n(¥)
and o(#) will be high, but for small reflected signals they will remain linear. There-
fore, their solutions will again include decaying free components (in the steady-
state mode) and forced componenits having the form (10.33) and (10.36), as in a
single-tuned case. Differences will consist only in more difficult definitions of
amplitudes and phases of increments. From here it follows that all conclusions
concerning the structure of the output signal spectrum may be completely trans-
ferred to the case of the more complex oscillatory system.

10.5 FORM AND SPECTRUM OF THE HIGH-FREQUENCY SIGNAL
FROM AN FM TRANSISTOR AUTODYNE

With frequency modulation of the carrier, the analysis of the output signal spec-
trum becomes significantly more complicated. In this case, an increment of ampli-
tude n(¢) will contain not only the autodyne signal (10.33) with amplitude (10.34),
but also a PAM signal determined for any law of modulation by (7.52). Thus, in
the FM autodyne we have:

n = ﬁcos(QE¢+‘{’“)+%e""' j &' O(n)dt (10.42)
L.k Gy W1+ (QpT))
where 7= U oG Uk G}y 1+ O ) is the autodyne signal,

< -v-9, T +Q,} (I'+T))
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and the function @(¢), reflecting the effect of the PAM signal, is defined differently
for different laws of modulation (see Chapter 7).

We will address the analysis of the oscillation phase increment, which is cal-
culated from (10.31). In this formula, in addition to an increment of phase a there
also enters an increment of amplitude n that consists of an autodyne signal and a
PAM signal. From (10.31) we can see that the PAM signal enters into the equation
if high frequencies are considered (i.e., B/0U # 0). From (10.31), we obtain for
an inertialess autobias case (i.e., T, = 0):

1 8B/8U 1 1,k
a(t) = ——— 1- ()dt ——————cosQ ¢
O="Tvaciov Y)J i Q,7U G °
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1 éB/oU

_ 1 I,eﬂk
1- t)cos(Q t -, )dt — cosC) ¢t
U 0G50 DJOcos@e-¥,) Q,TU G b (10.43)

1 o6B/oU 1 —yr'e 0T
- 1- —e e’ ®Ot)de | dt
TU 6G/6U( Y)I[T j ©

where ¥, = arctan[Q,7"/(1-y)]. Having integrated in (10.43) the autodyne incre-
ments:

- T' Ireﬂk 1
[nt)cos(@yt +m-%)) =2 - = [ cos(Q,t —¥, )t
T G, JU-7)+(Q,T")
v Ik
S l sin(Qyt —'¥,)
QT G, \J1-7)* +(Q,T")
we obtain:
1 6B/8U 1 L,k 1 ,
oft)=— a-y L - sin(Q,f - %))
U 6G/oU QT G, \/(I—Y) +(Q,T")?
(10.44)
Ik T
1 1~ o8 Dt__ll_aB/aU (I_Y)J' le—'/rje'”d)(t)dt dt
Q,TU G, TU 8G/8U T

It is obvious that the two first terms of the right-hand side of (10.44) are con-
nected to the reflected signal and may be transformed to:

Ard,epcos(Qpt — 1) + Ayl epc0osQpt
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where amplitudes 4, and 4, of the signal are connected to the autodyne circuit
parameters and its mode. In the absence of a reflected signal (/..o = 0) these terms
vanish.

Let us now consider the last term in the right part, determining the conversion
of the modulation signal to a phase increment. We note at once that for an inertia-
less transistor (8B/6U = (), the last term vanishes. In the case of a sine wave
modulation function, ®(¢) is defined by (7.51):

o) = éU(Mzr:Ti = EUOST cosQ), ¢
2 a 2
Now

T 7 sin(Q =¥ )
¢ 2 m all

' 5 ’ 5
Iet/T O()dt = —erTjet/T cns(th)dt ==Ue -
2 2 QT 1+(Q, T

Finally we have:

1 8B/oU

7 T e:/r' Sm(th_lPal)dt
T'U oG /oU

QT 1+(Q,T'):

1 75§
(1—Y)J‘;€' i ‘2‘U05

(10.45)
_ 8BIOU

5 1 €
=Y a2 —
sciav @y @Iy

So the last term defines the modulation signal in a phase increment. Now we rep-
resent the autodyne output signal as:

cos(Q, - )

u(t) = {UO + ﬁad cos (QDH-‘Fad) + ﬁPAM cos (th+‘}‘pAM )}

o (l+ecstmt)t+(p0+Gad 0s@pt+ P )| (10.46)
X COS

+0p, s cos(th+<DPAM)

where subscripts ad and PAM designate the amplitudes and phases of the autodyne
signal and the signal of parasitic amplitude modulation.

We have established that even for a rather simple law of modulation of fre-
quency (a pure sine wave), the spectrum of high-frequency output oscillations in
the autodyne is very complex. We will not write here strict expressions for ampli-
tudes of each spectral component {it is too unwieldy), but we will estimate a spec-
tral structure directly from (7.54).
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The spectrum contains the following components;
» Those with frequency oy of free oscillations;
e  Components of the FM signal with frequencies w4 + nQ,,;
o Components of the autodyne signal with frequencies o + kQp near
the carrier frequency;
e Components of autodyne signal with frequencies w; * nQ,, + kQp
near each component of the modulation frequency.

There are also components in the spectrum whose amplitudes are much less
than these components that do not strongly influence the autodyne modes. The
structure of the spectrum shows that processing of the autodyne signal can be car-
ried out on any harmonic of the modulation frequency (most conveniently on the
largest harmonic of the FM spectrum), around which it is possible to locate a sig-
nal at the Doppler frequency (autodyne signal) on which to carry out the final
processing.

In the case where frequency modulation is carried out using a more complex
law than the sine wave, the analysis becomes significantly complicated, but the
results of the analysis of spectral structure are rather easy to predict. In the spec-
trum the components responsible for modulation vary, but around each of these
components there are components shifted by the Doppler frequency.

10.6 TRANSFER FACTORS OF AN AUTODYNE ON A VOLTAGE
AND A CURRENT AND MODE OPTIMIZATION

Theoretically, it is possible to use the change of any parameter describing the
mode (amplitude, phase, bias voltage, direct currents of transistor electrodes, etc.)
as the useful signal from the autodyne. In practice we more often select an auto-
dyne amplitude signal from the peak detector, and also an increment of a constant
component of the collector (emitter) current. In this section we establish the auto-
dyne sensitivity for both these methods, and consider, first, in detail, the case of
low frequencies for a particular transistor, and then briefly describe the results for
the case of high frequencies.

First, however, it is necessary to note that it is not always possible to recom-
mend as modes of operation those modes in which the sensitivity is high: it is nec-
essary to carry out additional analysis of stability for these modes with various
sorts of interfering influences, to reveal their potential powers, and also to deter-
mine whether it is possible to realize these modes practically.

10.6.1 Analysis for Low Frequencies for a Particular Transistor

Parameters of an autobias chain are usually selected so that with the required filter
its time constant is small in comparison with the time constant of the loop
(T'. << T"). This is necessary for prevention of faltering generation (Chapter 6).
Assuming T, = 0, we obtain from (10.34):
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(10.47)

n

where K, = ————
1ak/G,

is the voltag e transfer factor of the autodyne.

For calculation of K, let us assume, as earlier, a piecewise linear approximation of
the transistor static characteristics. Then

G(U,E) = G(cos8) = Sky,(8) , J,(U,E)=8,Uv,(6) (10.48)
where S and S, are the slopes of the linearized characteristics of collector and

emitter currents, and v, (0} are decomposition factors of a cosine impulse of cur-
rent that depend on the cutoff angle in the usual manner:

Y4(8) =(sin0-Bcost)/m, v,(8)=(0—sinBcosO)/n (10.49)

We will now determine the formulas for the derivatives that are included in
the expression for function y:

oG dG Ocos@ _ dy, cosO Sk

— = =-Sk —sin 20

oU dcos® oU dcos® U nlU

oG dG Ocos® dy, 1 28k .

—= =-S — =——5in0 10.50
CE dcos® OFE dcos®6U U (10.50)
Do §4,(0)+S,U Lo 2058 S g

oU dcos® oU T

%—SU dy, a":f’i.e_zs 6

O0E ¢ dcos® ©OF ‘n

Now we will find a connection between the function vy, included in (10.47),
and the cutoff angle in an obvious form:

1 b[yo+(9cos9)/n]_(btane)/n
 cos® 1+50/ 1 T 1+b8/m

(10.51)
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where b = SR, is the autobias parameter. Note that if we analyzed a case of com-
bined emitter and base autobias, the formula for y would be similar, but the magni-
tude of b would change to b = SR, + SR,. We calculate the normalized derivative,
which is included in (10.47):

U 06 _U G _sin20
G,0U GoU my,(6)

(10.52)

Substituting now (10.51) and (10.52) in (10.47), we obtain the final expres-
sion for the voltage transfer factor of the autodyne:

K, = L (10.53)

[bYo—COSOJZ 25in® 2+(Q Y
1450/ Ty, P

As we can see, this formula is quite complex. However, analyzing it qualita-
tively, it is possible to draw a number of important conclusions.

We first consider the term (2sin@)/ny,. For 6 = = (at the point of self-
excitation of the autodyne), y; = 1 according to (10.49), and sin® = sinwt = 0.
Therefore, at point 0 = « this term is zero (i.e., Ky has a maximum).

Let us consider the term (by, — cos0)/(1 + b0/r). If the autobias parameter is
selected so that

by,(0)~cos6=0 (10.54)

then Ky again reaches the maximal value. We will call the value of the autobias
parameter, appropriate to this maximum, “optimum” B,,,.

We note that the presence of a maximum of the voltage transfer factor of the
autodyne at the point of initial oscillation excitation was found by I. L. Bershtein
in 1946. The physical treatment of this fact is clear, as at the point of excitation
any external influence results in a strong mode change.

We now consider the autodyne properties of the single-tuned generator in the
case when the increment of the constant component of collector current of the
transistor is observed. As this increment does not enter directly in the linearized
equation (10.18), we will connect it with a variation of amplitude:

AJ(1) = %n(t) =AJcos(Qpt +¥,) (10.55)
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where AJ(1) is the increment of collector direct current, and AJ and ‘P, are its
amplitude and phase. For piecewise linear approximation J(U,E) = SUyy(0), from
which we obtain:

=SYO+SU_‘170_19?§_9:5 - U_‘ib__(w+Ld_E
dcos® dU dcosO\ U U du

Calculating the derivative dE/dU from (10.27), we find after transformations

K, =|1- D Bp=cosb ), (10.56)
Ty, 1+b0/m

AT/, ik

where K, =
Yo/

is the current transfer factor of the autodyne.

Therefore, we have established that the voltage and current transfer factors of
an autodyne are connected in a complex manner. Nevertheless, from (10.56) it is
possible to draw a number of the important conclusions. At the point 8 = 7, as
follows from (10.54), the function Ky has a maximum equal to 1/(Qp7). From
(10.56) it follows that at this point K, = 0. The second maximum of Ky is at the
point b = b,, = (cosO)/yp. We can see that at this point K is also maximal, and
therefore KA0,,,) = K((8,)) = 1/(€2pT). Since it is possible to show that the term in
parentheses in (10.56) is a monotonic function of cos6, then K has no other
extrema.

We note that the theoretically derived equality of voltage and current transfer
factors of the autodyne at an optimum point does not provide a basis to judge
equivalence of both methods of extraction of the useful signal. So the question of
absolute size of the useful signal (in millivolts) that corresponds to the chosen
method of forming the response is frequently important.

In Figure 10.3, the calculated family of diagrams of voltage transfer factor of
an autodyne as a function cutoff angle is shown for different b, and in Figure 10.4
similar diagrams are shown for the current transfer factor. We can see that K, has
two zones of maximal values: at the point of oscillation excitation (cos® = —1) and
in the point appropriate to small cutoff angles (0 < 90°). The shape of the curves
varies slightly with change of the Q-factor of the loop, natural frequency, or Dop-
pler frequency. Dependence of K, on the cutoff angle has a monotonic character,
but the zone of the large values also is very narrow.
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Figure 10.3 Dependence of autodyne voltage transfer factor on cutoff angle, for different values of
the bias parameter.

10.6.2 The High-Frequency Case

Analysis of the autodyne mode for high frequencies for the transistor (i.e., for fre-
quencies exceeding the boundary frequency of the transistor for slope fs) becomes
significantly more complicated. For calculations, it is possible here to take advan-
tage of the high-frequency piecewise-linear model of the transistor and of analysis
using an equivalent high-frequency cutoff angle.

The basic results of calculation of voltage and current transfer factors of the
autodyne are shown for the case of high frequencies in Figures 10.5 and 10.6. As
we see, the basic character of diagrams does not vary, a maximum Ky at 6 = ©t

3
KoK max
b=0 § 10 20 40 8

] NN T

QpT=0.1

o V Y

S
-1,0 -0.6 [+] 05 1.0

Figure 10.4 Dependence of autodyne current transfer factor on cutoff angle for different values of
the bias parameter.
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Figure 10.5 Dependence of autodyne volta ge transfer factor on cutoff angle for different frequencies.

remains in place, and the second maximum is displaced by increased cutoff angles.
The same situation is characteristic for current transfer factors.

10.6.3 Choice of Mode with High Autodyne Sensitivity

Consideration of mode choice for an autodyne for reception with high autodyne
sensitivity is connected to the analysis of some specific phenomena, characteristic
of transistor self-oscillatory systerms at high frequencies and beyond the frame-

Ko/K 3 max

b=0 5 10 20 40 80
—1

ol /
Y
/1
avwiini
e

-1,0 -0,5 0 0.5 1,0

Figure 10.6 Dependence of autodyne curient transfer factor on cutoff angle for different
frequencies.
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works of this book. We will therefore discuss only the results that are of practical
importance.

It was shown above that the first zone of the maximum of voltage transfer fac-
tor corresponds to the point of self-excitation. However, it is impossible to rec-
ommend the mode 6 = = for practical use under the following circumstances.

1. The amplitude of the reflected signal /.4 at the input to the autodyne is
proportional to the amplitude of the radiated signal U,,. The point of excitation
corresponds to small amplitudes of oscillation, and therefore I,.; and the absolute
value of the autodyne signal are also small, despite the large values of K.

2. Power efficiency of the mode © = = is low, as there is a low operating ra-
tio of collector voltage that results in a sharp decrease in the efficiency factor. This
circumstance may be very significant, especially for onboard systems.

3. The mode close to the cutoff of oscillations is also unprofitable because it
is unstable globally: oscillation in the autodyne may fail for insignificant variations
of parameters (e.g., voltages of power supplies), and hence the radar may fail to
function. The same circumstance may be important if it is necessary to deploy a
large batch of devices without individual testing.

The mode of large oscillations at b = b,,, which we have theoretically called
the “optimum,” corresponds to intersection of the cutoff curve of the generator
with the asymptote of the bias curves, and is thus the point of crossing curves (the
point of autodyne steady state) that exists only at infinity and cannot be achieved
in practice. This asymptotical mode is certainly not realized in practice because of
the proximity to the so-called overstrained mode. Detailed consideration shows
that it is necessary to choose b = 0.7b,,; and to operate in a critical mode (at the
boundary between understressed and overstrained modes). This mode (as opposed
to the mode at the point of oscillation excitation) is favorable in every respect: it is
stable globally, easily realized, and the output power and efficiency factor are
large.
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Chapter 11

Autodyne Modes of Transistor Oscillators
with Strong Interference

In Chapter 10 it was shown that the delayed reflected signal in an autodyne causes
a complex periodic mode in which the increments of oscillation amplitude and
phase, and other resulting increments (e.g., the direct emitter current), are quasi-
sinusoidal functions of time, varying with the Doppler frequency. The choice of an
autodyne mode for operation in a short-range radar is chosen to achieve high auto-
dyne sensitivity (i.e., a strong response to a target moving in the radar antenna
beam). The necessary sensitivity 1s often not too high to preclude use of simple
circuits. However, in some cases autodynes must have properties that can be ex-
tremely difficult to achieve without certain complications or improvement of the
circuit structure.

So, for example, in systems where autodynes are used over long periods (in
steady-state moving target detectors, security devices, instruments for measuring
of substance parameters, etc.) there arise major issues of maintaining high fre-
quency stability of the signal. We note that in modemn security systems the re-
quirements of electromagnetic compatibility in certain regions of the frequency
range often preclude use of autodyne variants having low frequency stability. In
onboard short-range radar the opposite situation applies: often, because of the
short duration of the autodyne operation a high frequency stability is not required,
but the basic problem is reliability and speed of range measurement. In such sys-
tems, the most important issue is autodyne noise immunity from various interfer-
ence types, principally synchronous and repeater jammers.

Stabilization of microwave autodyne frequency in the usual ways is not al-
ways possible because of specifics of the application. The problem may be re-
solved to an extent by reliance on the phenomenon of external synchronization of
oscillations, introducing a need for theoretical analysis of autodyne properties of
synchronized microwave generators. The same problem also arises in a number of
practical cases, for example, when a powerful jamming signal whose amplitude
and frequency corresponds to the band of synchronization is incident on the auto-
dyne system, causing frequency lncking to the jammer or the transfer of the auto-

249
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dyne to a mode of quasi-sinusoidal beating. Here the synchronized jamming is
sufficiently harmful that it is necessary to reduce its effects.

We must add that an erroneous opinion is held by some radar experts that the
radar will fail when its autodyne is locked in frequency or transferred by jamming
to a beating mode. This is actually far from being so. In this chapter the theoretical
consideration of autodyne modes in the presence of an active synchronizing jam-
mer will be carried out. The analysis is based on results of published works on the
synchronization theory of self-oscillatory systems, where a certain class of circuits
for synchronized transistor oscillators is investigated in detail. Such analyses are
aimed at development and substantiation of concrete recommendations for design
of autodynes maintaining their required properties in the mode of frequency syn-
chronization by a powerful jammer.

The material in this chapter is developed in the following sequence: we derive
again the abbreviated differential equations of the system and then briefly describe
the steady-state synchronous modes, their stability, definition of the synchroniza-
tion band, and the beating mode in the circuit without autodyne influences. After
that, the autodyne properties in the presence of a jammer are investigated, the bi-
furcation of the steady-state variations in the system are considered (i.e., the transi-
tions from behavior or variations of one type to behavior of other type), and con-
crete recommendations for practical use of the synchronized autodynes are devel-
oped.

11.1 THE COMMON PROPERTIES OF AUTODYNE MODES OF THE
SINGLE-TUNED SYNCHRONIZED OSCILLATOR

11.1.1 Abbreviated Equations for the Synchronized Oscillator
Now let us consider again the generalized circuit of the transistor oscillator with an
ideal transformer (Figure 11.1), similar to that considered in Chapters 6 and 7. We

will consider that two signals — the synchronizing jammer frequency and the re-
flected target echoes (the useful signal) — influence the oscillator, and these are

l l fon () e
li’ ' iJss . Yss(P)- |

Figure 11.1 The circuit of the transistor oscillator with the ideal transformer, under the influence of
a reflected signal Jr,n and a synchronizing jammer signal .
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represented by current sources with complex amplitudes /s, (with frequency w,y,)

and Iy =1, exp [ Jo-Q Dt)] , respectively, where, as before, ¢ is the phase of
the high-frequency voltage on the oscillatory system u(f), and Qp, is the Doppler
frequency.

For simplicity we will characterize the transistor by a high-frequency parame-

ter Y, proportional to the complex nonlinear conductivity Y(U), which for a
bipolar active element appears as:

Y(U)=kp S, (U) (11.1)

where k = U / U ss = k is the complex feedback factor of the generator, which in

the case of an active zlement represented by a two-pole is equal to the
transformation factor £,

S U)= Y;l is the complex slope averaged over the first harmonic, and
U is the amplitude of the transistor base voltage whose complex ampli-

tude is i&' =Ue’”.

On the basis of the approach developed in Chapter 7, based on equating the
currents flowing into element “a” of the circuit in Figure 11.1, we obtain the sym-
bolic abbreviated equation of the system as:

Y,(p+ M Us = Y(U)Us+ Lgn+ Lren (11.2)

Here, Y, is the symbolic conductivity of a circuit abbreviated with respect to the
carrier frequency y, p is the differential operator for slowly varying functions of
time U(f) and ¢(¢), and A = @, - 0 is the frequency difference between synchro-
nized and reference signals. Dividing (11.2) as usual into its real and imaginary
parts, we obtain the system of equations for the problem in an obvious form:

T£+U
G

5

_oa 2}:6@_(4” coso+1,, cosQDt) (11.3)

85

d BU k _ ‘
TUT‘;’W{LT__;J} = —G—(Im sin@-+1,,, sin Q) (11.4)

55 55

where T and G, are, as previously, the time constant and resonant circuit conduc-
tivity, G(u) = ReY(U) and B(U) = ImY(U). From system (11.3) - (11.4) there
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follows, for I,,,, = 0, the equations of the usual autodyne (discussed in Chapter 10),
and for [0 = 0 the equations for the synchronized oscillator investigated in our
previously published works [1, 2].

A distinctive feature of (11.3) - (11.4) in comparison with the equations for
the usual autodyne is that their right-hand terms are functions of a synchronizing
signal, which in powerful jamming is not small. Therefore these equations cannot
be analyzed using the previous approach: it is impossible to linearize them around
a steady-state independent mode as is commonly used in autodyne analysis, as it is
now impossible, even for a small target signal, to limit consideration to a small
right-hand term, especially with a large synchronizing signal. In a real situation
this jamming synchrosignal amplitude I,,, may be quite significant, especially if
synchronization is carried out by a powerful active jammer. Therefore, we will no
longer impose any restrictions on the synchrosignal amplitude.

The reflected signal /.. is usually assumed to be small, as is typical for short-
range systems. We will assume that the synchronizing signal may result in large
deviations of the steady-state mode from independent, but, nevertheless, because
I,z is small it is possible to linearize the equations (11.3) - (11.4), but now around
a steady-state synchronous mode. It is then possible to determine in the usual man-
ner the transfer factors of the linearized system and to study more in detail the
features of synchronized oscillator behavior for small influences of a Doppler fre-
quency signal.

11.1.2 Abbreviated Equations in Normalized Parameters

Now we will describe, following our previous works [1, 3], the basic properties of
transistor oscillator synchronous modes. For this purpose we should accept a
model of nonlinearity. We will use further, following [3], a linear approximation
of functions G(U) and B(U) around a steady-state independent point U:

ple aB®
G(U) = G(U0)+-E]—(U—UO), B(U) =B(U0)+—E(U—Uo) (11.5)

Let us note that such a linear approximation does not correspond at all to the
initial linear model of nonlinearity: for such an approach it is not the static charac-
teristic but rather a complex electronic conductivity Y(U) = G(U) = jB(U) that is
approximated by the linear model (11.5), and this model of conductivity corre-
sponds to a parabolic approximation of an oscillatory (instead of static) character-

istic 1I{U)=Y(U)U . This is illustrated in Figure 11.2 where real and approxi-
mated dependence of electronic conductivity on amplitude are shown, as well as
the appropriate oscillatory characteristic.

It is possible to give one more example for acceptance of the model repre-
sented by (11.5). Frequently the model of an inertial active element is based on
introduction of a so-called pure delay t4,;. In other words, it is considered that in
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the generator feedback circuit (or inside the active element) there is a dispersion-
free delay line with transfer factor exp(-p7,.,), and therefore the output current i(¢)
lags behind the input voltage u(f) by the phase ¢u; = ©sT4. In this case an identi-
cal approximation of the real and imaginary parts of electronic conductivity of an
active element is justified:

(U) = IU)exp(jot,, ) = IU)(cosot,, + jsinwt,, ) and

GU) = tf/(U)

coswt,, , BU) = lf/'(U)

sinmT,,

Now the system of equations (11.3) - (11.4) can be rewritten in the normalized
parameters as:

§_+a(a_1)=Fcos(p+(Dcosﬁot (11.6)
T

a%—(g+a|g+(a—l)tana]z—Fsin(p—(Dsinf_)Dt (11.7)
Ll

Here the following parameters are used:

a=UlU, is the normalized amplitude of the synchronous fluc-
tuations,

£=AT/g is the normalized frequency difference of the syn-
chrosignal,

[9) »=Q,T/g is the normalized Doppler frequency,

n

G(U)=kS4(U)

NS approx. I

approx.
Gss
real . N
\\ Y > | y >
Ug Uy U,
a) b)

Figure 11.2 (a) Real and (b) approximated functions of electronic conductivity on amplitude and the
oscillatory characteristic appropriate 1 approximation.
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Yo %% o lized derivati
== ed derivative,
G. U is the normaliz ve
kI syn . . . .
F= is the normalized synchrosignal amplitude,
GssUOg
kI refl . . . .
= is the normalized amplitude of the reflected signal,
GssUOg
t=gt/T is dimensionless time, and
_0OByoU is the nonisochronism parameter in the independent

OL“<'5G0/6U mode of the oscillator.

The sense of the parameters used here is discussed in detail in [3], so we will note
only that all regime functions included in these parameters are calculated at the
steady-state independent point (i.e., for I, = I,z = 0). We will consider in more
detail a sense of the entered parameter o.

For a case of a pure delay we have:

Lo OBIOU (@)r|/oU)sin(wt,,) _
8G/aU  (8]Y]/oU)cos(wr,, )

~tan (01, )

For the independent generator with an inertial two-pole G(Uy) = G, and
B(Up) = (0p — ©9)TGss. From this it follows that:

B(U,)

=0.56m, tan .
GWU,)

0, =0, +0.55w,

Thus, in case of a pure delay a parameter tano defines the frequency deviation of
free oscillations from the natural frequency of the selective system wg (i.e., the
isochronism of the generator).

In modern inertial active elements the character of dependence G(U) and
B(U) may be the diversified, and for them the model with a pure delay is not often
used. However, near the steady-state point the functions G(U) and B(U) are usu-
ally smooth, and it is possible to use the linear approximation (11.5) for them.
Thus, the parameters B(U,)/G(Up) and tana = (0B/6U)/(0G/0U) may not coincide,
generally speaking. If the complex slope Y contains a conductivity B = const, in-
dependent of amplitude, then the capacity or inductance appropriate to it can be
attributed to a circuit so as to reduce the problem to an inertialess active element.
If B depends on U (e.g., due to a pure delay or an inertial process in the active
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element), o # 0 and the generator is anisochronous. Therefore, o in a common
case is also named as the generator anisochronism parameter.

In the absence of a reflected signal, @ = 0 and the system of the equations
(11.6) - (11.7) corresponds to the abbreviated equations of the synchronized gen-
erator using the normalized amplitude a and phase ¢ of the oscillations:

ﬁIﬂwz(a—l):Fcoscp (11.8)
dt

a§$+a[ﬁ+(a—l)tana]=—Fsin(p (11.9)
1

This system of equations is investigated in detail in [1] by the phase plane method.
11.1.3 Steady-State Synchronous Modes
Now we will describe, following our previous works [1], the equations for the

steady-state synchronous mode obtained from (11.8) - (11.9) with time derivatives
equal to zero:

a{a-1)=Fcosgp (11.10)
alt+(a-Dtana]=-Fsing (11.11)

These equations define a family of so-called amplitude-frequency characteristics

(AFCs) a(8):
a*(a-1 4 a* [E+(a-Dtana] = F? (11.12)
and phase-frequency characteristics (PFCs) @(&):

tana+tan@

\/1+tan2 P

Local stability of steady-state synchronous modes is determined by the char-
acteristic equation:

£ —E(tano - tan @) — F 0. (11.13)

T?p? +Thp+by, =0 (11.14)

Stability is defined by two borders: b =0 (Border M ) and b, =0 (Border Q),
which are set on AFC plane by the equations:
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Figure 11.3 Amplitude-frequency and phase-frequency characteristics of the locked isochronous
oscillator.

Border M - 3q-2=0
Border Q- &2 +E(3a-2)tana+(a—-1)(2a-1)(1+tan’a) =0

The structures of the AFCs and the PFCs are shown in Figure 11.3 fora =0
(the isochronous generator) and they correspond closely to known characteristics.
In the same figure are shown two borders of stability for the synchronous mode (M
and Q), a horizontal straight line and the stability ellipse constructed from the
characteristic equation of the problem.

We can see that in the isochronous case for low amplitude synchronous jam-
mers (F < 0.25), the AFCs represent closed ellipses, having vertical tangents at
points of crossing with the border of stability Q (i.e., at points where stability of
the synchronous mode is lost at border Q). In general, any crossings of AFCs and
PFCs with border Q are accompanied by vertical tangents. For F > 0.353 the AFC
becomes open-loop, and stability is defined by border M.

The PFC for small inputs is similar to the arcsine function and stability is lost
at border @, where the PFC has vertical tangents. For F > 0.325 the stability in the
PFC is determined by border M.

In the anisochronous case (o # 0) the AFCs and PFCs are curved (Fig-
ure 11.4), but, as before, for small F stability is determined by border Q, and at
large stability by border M.

Figure 11.5 shows the dependence of the generator synchronization band on
the amplitude of the synchronous jamming signal. These diagrams are constructed
using the joint numerical sotution of AFC and PFC equations and borders of sta-
bility. On these curves it is possible to find a band of frequencies in which the
Jjamming results in autodyne synchronization at the given amplitude F of the
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Figure 11.4 Amplitude-frequency and phase-frequency characteristics of the locked anisochronous
oscillator.
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Figure 11.5 Dependence of synchronization band on amplitude of synchronous jammer signal.

jamming. Earlier this zone of synchronism was considered a failure zone of radar
operation, but below it is shown that this is not so.

11.1.4 Transients at Synchronism

To understand the processes in the synchronism mode, as distinguished from the
independent case (Chapter 6), we will address the analysis of phase portraits of the
system (10.10) - (10.11). The equation of phase trajectories is derived from
(11.10) - (11.11) by exclusion of time:

da a[Fcosq:—a(a-—l)]
do T _F sin@—af—a(a—-1)tana

(11.15)
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The space of conditions (phase space) represents a cylindrical surface (¢,a), which
is called a phase plane.

For construction of a phase portrait - families of trajectories a(¢) from (11.15)
for given parameters F, &, of the system - it is necessary to obtain data on character
and arrangement of so-called special trajectories: special points (conditions of
balance or steady-state modes), limiting cycles, movement on which corresponds
to a periodic mode (beating mode), and separatrices that divide areas correspond-
ing to specific trajectories. Further, it is necessary to discover how the qualitative
structure of the phase portrait varies for changes of system parameters, (i.e., to
construct the so-called bifurcation diagrams) and to determine the features of all
bifurcations: transitions from one structure of phase portraits to another. We will
not do this here in detail, but discuss only the important results for later use.

For zero frequency difference (in a mode of full synchronism £ = 0) there are
three special points k, b, ¢ on the phase portrait (Figure 11.6) which are, respec-
tively, a knot, a saddle, and an unstable focus. The isoclinal lines of vertical
(ILVT) and horizontal (ILHT) tangents are shown in Figure 11.6. We see that the
attraction area for a steady synchronous mode at a point & is the entire phase plane.
For increasing frequency difference & the steady knot & and the saddle 5 approach
and finally merge on the border of stability Q, forming a special point of the sec-
ond order: a saddle-knot. From the merged saddle separatrices the steady limiting
cycle is formed, on which movement around the phase cylinder corresponds to a
quasi-periodic beating mode. The appropriate phase portrait is shown in Figure
11.7, from which we see that the limiting cycle is globally steady (i.e., its area of
attraction is the entire phase plane). If a transition from the phase portrait of Figure
11.6 is carried out by increasing jamming amplitude then the special points b and ¢
approach each other and soon merge and disappear, leaving only the point of a
synchronous generator mode locked in frequency to the jammer. If the strong
jammer frequency difference is increased, the lock is broken at border M (Figure
11.4) where a steady limiting cycle of another type is formed on the phase portrait
(Figure 11.8), enclosing an unstable special point, and the character of the beating

1.8

10

o

0

Figure 11.6 The phase portrait of the generator in a full synchronism mode.
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Figure 11.7 The phase portrait of the gencrator in a beating mode at a small synchronous jammer
signal amplitude.

Figure 11. 8 The phase portrait of the generator in a beating mode with strong interference.

mode will thus be changed. Similarly, it is possible to inspect changes of phase
portraits for all possible combinations of parameters.

The important question for us is whether the autodyne will have time during
the target encounter to transition to the mode of locking to a synchronous jammer.
For the answer to this question we must calculate the transition time of synchro-
nous oscillation termination, and this can be done by numerical analysis of (11.8) -
(11.9) for various combinations cf parameters. Calculations have shown that the
amplitude locking time (1) and phase locking time (T, ) depend on the regen-
eration factor Sk/G; of the generator, as shown in Figure 11.9 for different values
of circuit Q-factor and for F = 04, £ = 0.2. For small jamming (but within the
locking bandwidth) the amplitude of the synchronous oscillations is locked much
faster than the phase. For example, with an initial phase of 45° the amplitude is
locked in 110 periods of oscillation and the phase in 420 periods.
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Figure 11.9 Time of autodyne locking by a jammer for different regeneration factors and Q-factors.

11.1.5 Bifurcational Diagrams of a Transistor Autodyne

To understand how locking to an active jammer occurs in the autodyne mode, we
study bifurcational diagrams. The analysis shows that in the plane of parameters of
input voltage F and frequency difference &, for each value of anisochronism pa-
rameter tano, the bifurcational diagrams appear as shown in Figures 11.10 and
11.12. These establish on the plane (€,F) the areas corresponding qualitatively to
different topological structures of variations on the integrated curve of system
phase portraits. On bifurcational diagrams these areas, as distinct from the struc-
ture of phase portraits, are specified by Roman numerals, and for each of these
area types the special points are identified.

For example, in area I in Figures 11.11 and 11.2 there are three special points
on the phase portrait: a steady knot, a saddle, and an unstable knot (see Fig-
ure 11.6). In area V (see Figure 11.11) there are an unstable focus and a steady
limiting cycle in the system (see the phase portrait in Figure 11.8). Schematically,
without taking into account some transitional areas of the bifurcational diagrams
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Figure 11.10 Rough splitting of generator bifurcational diagram in an isochronous case on stable and
unstable areas.

(areas with Roman numbers greater than V in Figures 11.11 and 11.12), the half-
plane of input voltage amplitude and its frequency difference is broken into two
parts (see the areas G' and H in Figure 11.11). In area G (above the bottom
branches of borders M and Q) on: globally steady steady-state synchronous mode
is observed in the system to which there corresponds a steady balance condition (a
special point of the knot or focus type). In area H (below the bottom branches of
the borders) there is a beating mode corresponding to the steady limiting cycle on
the phase plane 4, .

The border between areas G- and H is defined by lines Q and M. Actually, for
any given F it defines the generator synchronism band. Borders M and Q are given
as before by b, = 0 and b, = 0, where by = d + e, and b, = ed — bc are the factors of
the characteristic equation (11.14) linearized around the steady-state condition
ao, of the equations:

ﬁ+er| +by=DcosQ, ¢,
Z‘t (11.16)
_&l+cn%dy=—(d)/ao)sinﬁnt

T

Here, i and ¥ are increments of the amplitude a and the phase ¢ respectively,
e=2a,— 1, b=—ay[§+ (ag— 1) tana], c = [§ + (ap — 1) tana)/ap, and d = ao ~ 1.
In addition to the stability borders M and Q on Figures 11.11 and 11.12 the border
D = 0 is shown, where D is the discriminant of the characteristic equation (11.14).
The border D = b,* — 4b, = 0 defines the change of the knot points to focuses.

In the presence of a small target signal @ (® << 1), the analysis problem of
equations (11.6) - (11.7) is equivalent to that of the effect of small periodic inter-
ference with amplitude ® and frequency ©Q,on the system of the “autonomous”
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Figure 11.11 The fine picture of the bifurcational diagram for the isochronous case.

(i.e., not containing time in an obvious way) differential equations (11.6) - (11.7)
of the synchronized oscillator. Therefore, for the answer to the question of behav-
ior of (11.6) - (11.7) it is convenient to take advantage of some general results of
the theory periodic interference to “autonomous” systems.

As with (11.8) - (11.9) we can see that when plotted on the phase cylinder
a,p, (11.6) - (11.7) are dissipative (the right-hand terms of (11.6) - (11.9) are lim-
ited, and for large amplitudes a the derivative da/dt < 0 for any ¢). In other words,
all integrated curves for large a eventually enter into the band 0 < gy < 1 and none
leave it. In this case it is possible to show that for (11.8) - (11.9) in the field of
synchronism G~ (Figure 11.10), with small enough ®, there is a unique steady pe-
riodic solution with a frequency equal to that of the autodyne input p - This solu-
tion also represents a useful autodyne signal. The problem of this signal size defi-
nition for different system mode parameters is therefore of interest.
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Figure 11.12 The bifurcational diagram of an autodyne for the anisochronous case.

The appropriate unstable perindic variations of (11.8) - (11.9) correspond the
unstable special points of (11.6) - (11.7).

In the beating mode (area H of Figure 11.11), the introduction of a small pe-
riodic interfering voltage results in small changes in the course of the limiting cy-
cle (the formation of an invariant integrated surface in the form of a bidimensional
torus [4, 5]). System variations in the beating mode for this case are almost peri-
odic (when the ratio x of the period of interference 2r/ Q o to the period of varia-

tion of the limiting cycle at ® = 0 is irrational), or are periodic (when k is ra-
tional). In spectral language this last case implies a multiplicity in the spectrum of
beat frequencies approaching the frequency Q.

11.2 TRANSFER FACTOR OF AN AUTODYNE SUBJECT TO
SYNCHRONOUS JAMMING

Steady-state (steady and unstable) periodic variations of (11.8) - (11.9) can be
found as a first approximation, considering the periodic solutions of the linearized
system (11.16). For simplification of the analysis we will enter, as is usual, a linear
replacement of coordinates: x =y ~ n, where = —c/(p + ) =—(p + d)/b,and p is
a root of the characteristic equation (11.14). Now (11.16) can be replaced by a
pair of equations:

ﬂ—px:l.SCI)cosﬁD r—gsinﬁpr (11.17)
dn a,
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where for x = x, , it is necessary to use correspondingly p = p;; and B = B;. By
direct integration from (11.17), we obtain:

Q = = o=
X, =—(D_? -Py4Bys +a—D cosQp 1:+([31_2 Qp+%)smﬂu T (11.18)

p,z,2 +§D 0 0

Taking into account that n = (x; — x))/(B,—B1) and vy = (B>x; — Brx2)/(B2 — Bo),
it is easy to find the appropriate transfer factors for increments of amplitude and
phase in relation to the amplitude @ of the reflected signal. For studying autodyne
signal amplitudes 7 of interest, let us enter, as earlier, the voltage transfer factor

of the autodyne:

=—k1n———=KU(F,§,U0,a,§_2D) (11.19)
e
( UO G:sg )
Here it can be noted that the autodyne voltage transfer factor is a complex function
of amplitude F and frequency & of the synchrosignal, the oscillation amplitude of
an independent mode U, (i.e., a mode), the degree of anisochronism in an inde-

pendent mode a, and the Doppler frequency Q,, .
After some difficult transformations, we finally obtain:

_ A + B
a,(B, —Bl)[(bz —ﬁf))z +b12(_2§)]

(11.20)

KU
where
A=(p} +Q)Qp- p,B,a,) — (P + QL) Qo— p,B,a,) and
B =(p} +Q3)(B, Q0 g, + p,) —(p; +Q3)B, Qo g, + )
Let us discufs in a general way the dependence of transfer factor Ky on pa-
rameters F,E,a,Q, .
We notice again that the system of the equations (11.6) - (11.7) does not
change if we put § = £, tana. = — tanat, Q, =-Q, , and ¢ = —¢ (i.e., the transfer

factor of an autodyne does not depend on the sign of these parameters). Thus,
transfer factor Ki; as function of parameters &,tana,Q, is symmetric about the

axis £ =tano = S_)D =0. In other words, in analysis of the dependence of K, on

E tana, Q, we need examine only those areas where one of these parameters is
positive, say, tano > 0.
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The analysis of (11.20) shows that for Q, #0in the case b, =QJ and
b; — 0, the size of the autodyne signal transfer factor as a first approximation ap-
proaches infinity (i.e., in a vicinity of values b, = f—lf) and b; = O resonant phe-
nomena similar to those described for similar systems are observed). In other
words, a synchronized autodyne acts here as a resonant amplifier of the reflected
target signal. It is not difficult to understand how valuable this property is for de-
sign of systems with increased autcdyne sensitivity.

However, these resonant properties appear only in a vicinity of one point of
parameter space, and the condition b, = 0 corresponds to the border M of the oscil-
lations synchronism zones (for large input voltages F).

The beating mode corresponds to values by < 0 when the interference appears
at frequencies close to the synchrosignal, along with useful autodyne signal com-
ponents.

The physical sense of the point of full resonance is that, for b, = 0 at the point
b, = Q2 at the border of stability M, the period of variation in the limiting cycle

T=2n/ \/IZ (on border M the limiting cycle originates from a complex focus) is

closely equal to the period of the jamming T, = 27/Q, .
For b, = 0 we have:

From this it follows that at the pcint of full resonance the following ratio for as-
ymptotic value of the frequency ditference applies:

éixvm =§_)f, +1+ta.n:a
i 9

Dependence of the transfer factor on the synchronized autodyne voltage with
frequency difference £ at various F and tano were calculated on a computer and
are given in Figures 11.13-11.15. ontinuous lines in the figures show dependence
of Ky(&) for steady periodic variations of system (11.8) - (11.9) (i.e., for useful
autodyne signals). Dashed lines correspond to unstable periodic variations (i.e.,
those variations that appear with a reflected signal near unstable balance condi-
tions of the synchronized oscillator).

We will discuss, first of all, the results appropriate to the isochronous genera-
tor (i.e., the case tana = 0). The same results apply, naturally, to the generator
with an inertialess amplifying device.

The family of steady branches of resonant characteristics a(§) of the synchro-
nized oscillator is shown in Figure 11.13(a). As these characteristics at ¢ = 0 are
symmetric with respect to &, in the figure is shown only the right half-plane. The
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Figure 11.13 Amplitude-frequency characteristics (a), and dependence of autodyne voltage transfer
factors (b) in the case of frequency locking by a jammer (for tana = 0).

point of the independent mode corresponds to a case F =0, £ =0, a = 1. For this
independent point from (11.20), we obtain:

X 1

aut = T (11.21)
J&* +(QpT)

which in view of designations for g coincides with (10.47) of Chapter 10, with
y=0 for a case of fixed bias. With change of the mode U, the function g varies
and K, becomes maximal and equal 1/(QpT) at g = 0.

Upon introduction of the synchrosignal (¥ # 0) with zero frequency difference
(§ = 0), we have:
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Ky=— ! - (11.22)
Je2Qa-1? +(@Q,T)?
and, since & = 0 in the synchronous mode, a > 1, then K, falls in comparison with
K. [see Figure 11.13(b)]. With increase of the frequency difference for variation
on the resonant curve before crossing border Q [on Figure 11.13(a)], the autodyne
transfer factor increases [Figure 11.13(b)] up to the value Ky of the boundary
mode appropriate to failure of stability and transition to a beating mode:

1 (a-1)2g? +(Q, +M)'T

= 11.23
Ko~ 0T\ Ga_27g + (@17 (11.23)

As we can see, Kp > K, (i.e., the autodyne voltage transfer factor may exceed K
at the independent point). Dependence of K () for small F (F < 0.325) appear as
growing parabolas [Figure 11.13(h)].

For F > 0.325 the stability of the steady-state synchronous mode is defined by
border M [see Figure 11.13(a)], and the autodyne transfer factor K), at this border

18:
3ugr +9(Q, +1)’T?

M

AT -0, T g

Figure 11.14 Dependence of autodyne vc ltage transfer factor on frequency difference in the areas of
positive and negative frequency difference of a locking jamming signal.
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For the marked value
22 = 9QDZT2 +g°
asym 2
9T
or

1
ggsym = QDZ + '9_

(i.e., the autodyne voltage transfer factor Ky, asymptotically approaches infinity)
[Figure 11.13(b)].

The family showing dependence of K;(£) is not symmetric with respect to the
axis £ = 0, as we can see from Figure 11.14. Thus, for small positive £, the value
of Ky increases with increase in the frequency difference, while for negative & it
falls (Qp = const). In view of the axial symmetry in space of the parameters (£,Q2p,
tano = 0), a similar phenomenon is observed for the family K(Qp) for £ = const.
By virtue of this, it appears possible in the synchronized autodyne to distinguish
positive from negative Doppler frequencies Qp, (i.e., the direction of target motion
in space) based on the amplitude of the autodyne signal and also to receive a use-
ful signal proportional to the frequency difference § or to the Doppler frequency
Qp.

For a case of the anisochronous generator the dependence of Ki(&) becomes
complicated and even more asymmetric (Figure 11.15). Thus the marked resonant
character of curves for large synchrosignal amplitudes F is maintained.

From consideration of the specified dependence Ki(&,Q2p.F,a) it is possible to
draw the following general conclusions. For small frequency differences & with
respect to a line of maximum resonant characteristics the increase of synchro-
signal amplitude always results in reduction of the autodyne voltage transfer factor
Ky in comparison with its value for the independent mode K,,,.. Increasing the fre-
quency difference & results either in growth or reduction of Ky, depending upon
values of &, Qp, and tanca.. For small F in this case, within the limits of the syn-
chronism band where only the useful autodyne signal exists, the change of Ky may
be insignificant. For large amplitudes F increasing |£| leads to resonant growth of
Ky that was discussed in detail above. Thus it can be seen that, unless set by very
large Ky, it is possible to choose values of & and Qp so that the operating point
will be located far enough from the border M of the transition to the beating mode,
such that the amplitude of synchronous oscillations will be close to the amplitude
for the independent mode (a =~ 1), and thus the objective in autodyne sensitivity
will be provided in comparison with an independent autodyne [see, for example,
the point P in Figure 11.13(b)]. This circumstance may have major practical value.
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Figure 11.15 Dependence of autodyne voltage transfer factor on frequency difference in the case of
an isochronous autodyne synchronized by a jammer.

11.3 BIFURCATIONS OF PERIODIC VARIATIONS IN THE
SYNCHRONIZED AUTODYNE

As noted earlier, the area of resonant rise of the autodyne voltage transfer factor
lies near the border of stability A of synchronous oscillations of the generator.
This circumstance causes interest in further analysis of frontier areas of the bifur-
cation diagrams of the transistor autodyne. The results derived earlier concern the
existence of an autodyne signal (steady-state periodic variation in the vicinity of
the point of the synchronous mode) for any combination of parameters within the
limits of the synchronism zone (Figure 11.10), in the case where the amplitude of
the reflected signal @ is small enough. However, at the given value of @ in the
vicinity of borders M and Q (and on the borders) of the bifurcation diagrams, the
question of steady-state variations existing in the system and their stability remains
open.

As is known, for studying bifurcation phenomena it is not enough to examine
only a linearized system [i.e., behavior of system (11.6) - (11.7) is determined by
nonlinear terms]. For studying the possible bifurcations we will expand the nonlin-
ear terms of (11.6) - (11.7) in Taylor series in the vicinity of the condition of bal-
ance of system (11.8) - (11.9). The equations for increments of amplitude and

phase (increments 1} and y) take the form:
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iTl+en+by+}_:1’(ﬂk,¥k) =DcospT
dt k=2
(11.25)
C D .
ﬂ+cn+dy+ZQ(n",yk) =——sinQ,
dt k=2 a

0

where P and Q are nonlinear forms of variables m and y with constant factors of
the order k > 2, and other designations correspond to (11.16).

We will enter, as was done earlier in Section 11.2, a linear substitution of co-
ordinates x; > =y + By 21, such that (11.25) can be replaced by the following:

w R @ .
ﬁ_plxl +ZP (xlk,x:) =B,®cos2,T——sinQ, 1,
dt =2 a,

(11.26)

dx = O .
—2-p,x,+2.0(x,x3) =B, PcosQ,T-—sinQ,1,
dt k=2 a,

where factors of forms P’ and Q' with order k > 2 are easily defined through the
appropriate factors of forms P and Q.

As established earlier, (11.26) generally has in the vicinity of zero the peri-
odic solution x; ; = Xj (1) with amplitude of the order ®. Following the technique
of the classical theory of bifurcation of periodic variations [6], we proceed from
(11.26) to Poincaré coordinates (those normal coordinates ¢, in the vicinity of
periodic system variation). We will enter the parameter 6 = Qpt on a curve of
steady-state periodic variation of the system and define a vector

7 ={X,(0), X,(6),6}

We have a tangential vector

={X/(0), X;(0).1} = {£..t,.t,}

x2%y3°%z

ﬁ=7-[2;f]={nx,ny,nz} and b =7+ ={b,b,.b,}

Now it is possible to substitute coordinates in the following form:
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x =X, (®)+(n, —t.n)e+(b —1,b,)p
(11.27)
%, = X,(0)+(n, —t,n)e+(b,—1,b,)B

where the factors before the normal variables ¢,B are periodic functions 6 and have
the order ®. Substituting (11.27) in (11.26), we obtain linear equations for the case
P’ = Q' = 0 describing the variables £ and [ with periodic factors.

Due to reducibility of the given system, its multipliers (and consequently the
solution of the question of variation stability) will not change with a linear substi-
tution of coordinates, which we wi}l now write as:

b =(nx utxnz)a+(bx -txbz)B
S, =(ny wtynz).e +(by —tybz)[.’)

For variables y,, y, from (11.26), we obtain the following system of three
equations:

d o i x ¢
R YA LI A REACW AR
k=2

f%"’”ﬂ +iQ"{[X1(9)’fyr]k’[Xz(e),fvz]*} =0 (11.28)
k=2

do

dt =
from which we can see that in linear approximation (P’ = Q' = 0) the bifurcational
diagrams for (11.6) - (11.7) coincide with those for (11.8) - (11.9), since p, and p,
are the roots of the characteristic equation (11.14).

For further constructions it is necessary to know the periodic solutions X;(0)
and X,(0). We will consider a procedure for obtaining the asymptotic decomposi-
tion of (11.6) - (11.7), a periodic solution with the degree of parameter f.

We shall search for the solutiocn X; in the form

X, 0)= A+ fixl + x + 5]+,

where i = 1,2. Substituting the form of this solution in (11.26) and equating mem-
bers of identical order in f, we obtain the following infinite system of linear non-
uniform systems of differential equations with periodic right-hand parts, which
may be solved consistently with use of the periodic solution of the previous equa-
tion:



272 Fundamentals of Short-Range FM Radar

0
X, “P.-XiO =B cosQDr—LsinQD'c
dt a,
dXil 1 1 0 0 2
—o-pXi=-p, [(X, ).(%3) }

2

Lot ==l 0. () (). (2

herei=12,P'=P,and P, =Q'.
We will assume that an approximation of the solution X(6) of the order n is
thus found:

n
> Xt
k=1

Having substituted this solution in (11.28), we find that in forms P’, Q' all non-
uniform components up to the order n inclusively will be reduced. Thus, in these
forms all components except for the largest degrees of increments y will have vari-
able factors. Then the linear system in view of members of the second order takes
the form:

dy,

d—;—piy,. ==2/X (o,y, + o, ;) (11.29)

from which it is possible to find the change of the order f with respect to the size of
the characteristic parameters p;. For this purpose it is sufficient to present the fun-
damental system of solutions of (11.29) as:

_v0 1
Yy =Yy + /Y

to substitute it in (11.29), and to find solutions of the resulting pair systems of dif-
ferential equations. Further, having substituted in these solutions == T = 21/Qp, we
shall calculate a matrix of the system (11.29) and we define its multipliers p,. Then
the characteristic parameters p; = L,u,/T.

For consideration of bifurcations, it is possible in a similar way to construct
maps of the following in view of nonlinear members. Concrete realization of these
procedures is extremely unwieldy and is unjustified in our problem as the basic
necessary data can be obtained, being guided by general provisions of the bifurca-
tions theory of periodic variations in space with the help of qualitative reasons.
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From this development it is clear that the multipliers of the linearized system
(11.28) for small f differ little from those of system (11.16) at £ = 0. In other
words, with introduction of a small reflected signal the borders of stability M and
Q of the bifurcation diagrams examined for system (11.8) - (11.9) undergo small
shifts. By virtue of this, the qualitative character of borders is not generally
changed. On border @ for an output from a synchronism zone there is a merging of
two invariant periodic curves of system (11.6) - (11.7), one steady and one saddle-
shaped, along with formation of complex periodic variation in the double beating
mode (for small F), covering the phase cylinder.

Border M corresponds to a change of stability of the steady-state periodic
variation curve with Doppler frequency Qp. Thus, as this border is a safe one, a
steady two-dimensional invariant torus is established on it, consisting entirely of
steady spiral phase curves for irrational values of the number of rotations k. With
change of parameters the number of rotations on this torus varies, generally speak-
ing, so it adopts irrational or rational values when the separate steady phase curves
are plotted on the torus. Corresponding generally to border M there is a passage of
multiplier pairs through an individual circle. The case in which both multipliers
W, are equal to 1 corresponds in our problem to a resonant point of a curve M,

where \/E =§D (e, )n, :exp\(ij2n\/32—/(—20)=l .

In the vicinity of the resonant point there may be rather complex reorganiza-
tions of system variation structures resulting from resonant excitation of amplitude
oscillations with frequencies that are multiples of Q,. The concrete character of
the bifurcations depends here significantly on the type of local nonlinearity. Solu-
tion of these bifurcations involves significant difficulties and is not necessary for
us, as for small @ the zone of resonant reorganizations is so smali.

Similarly, it is possible to inspect the bifurcations in transition areas of the bi-
furcational diagrams (in areas VI-VIII, XII-XIII of Figures 11.11 and 11.12).

So, in summary it is possible to ascertain that as a first approximation, the
zone of existence of a useful autodyne signal in a synchronized autodyne (in the
absence of adjacent interference components in the spectrum) coincides with the
area of existence of steady synchronous oscillations of the synchronized oscillator.
Outside the specified area in the system, the mode of complex beating is observed
when in a spectrum of an autodyne signal there are the parasitic components de-
pendent on frequency and amplitude of an active synchronous jammer. The char-
acter of the transition from “synchronism” to the beating mode and back is de-
fined, first of all, by the changes eccurring in the synchronized system.
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List of Symbols

a normalized amp!itude of synchronous oscillations
b autobias parameter
B(U,E) imaginary part of the oscillator equivalent output admittance
c velocity of electromagnetic wave propagation
Cyle) varicap capacitance
Cn varicap capacitance at e =0
G parasitic capacitance
E bias voltage of autodyne (the oscillator) active element
E;; initial bias voltage of active element
E,. control voltage on varicap
E cutoff voltage o active device currents
e external voltage on varicap
e, e cosine and sine components of parasitic bias signal
F normalized amplitude of synchronizing signal
F(@) law of capacity modulation
Fon function of antenna orientation
F () phase modulation function of transmission
F.(t7) phase modulaticn function of reflected signal
F(t7) phase modulatien function of converted signal
Af frequency deviation (cycle frequency)
Gan antenna power gain
Gss resonant conductivity of selective system
G(U,E) real part of the oscillator equivalent output admittance
(0 current value of the current
i(u) voltage-current characteristic of active element
ic current flowing through condenser
i current flowing through inductance coil
Iy constant component of current
I; current first harmonic
104)] oscillatory characteristic of active element
1 complex amplitude (complex envelope) of current
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Loy o1 Iy, amplitude of external synchronizing signal

I amplitude of first harmonic of active element output current

IgorJ, constant component of active element input current

Loomo O Joom constant component of current of active element common
electrode

Lo amplitude of first harmonic of active element output current

Lo O T,y constant component of active element output current

L amplitude of reflected signal

Jn Bessel function of the first kind

Jjo =dldt symbolic operator of differentiation

kp = ulugg feedback factor

ky, complex feedback factor —(U U s:)

k, transformation factor of ideal transformer

Ky module of complex feedback factor

Ky frequency coverage coefficient

K, current transfer factor of autodyne

Ky voltage transfer factor of autodyne

K; nonlinear distortion coefficient for second harmonic

K; nonlinear distortion coefficient for third harmonic

L single-tuned circuit inductance

Lgs variable inductance at FM

m coefficient of PAM

Meom order of the common electrode autobias circuit

mg modulation index of resistance

Mg order of selective system

my amplitude modulation index

M mutual inductance

n normalized derivative of N function

N function opposite to feedback factor

p=dldr operator of differentiation in dimensionless time

P1=—JOu displaced operator

Dk coupling coefficient for single-tuned circuit

P radiated power

P power at receiver input

q electric charge

O average value of electric charge

QP numerator and denominator of symbolic admittance

Owy) FM single-circuit quality factor for ® = @,

R control resistance at resonance

Repn, Com resistance and capacitance of simple RC autobias chain

R _ resistance defining slope of load straight line

Reom resistance of common electrode autobias circuit
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maximum possible range resolution

equivalent loss resistance of sequential single-tuned circuit,
distance between target and autodyne

slope of voltage-current characteristic of active element; slope of
discriminator characteristic

slope averaged cu first harmonic (a slope of oscillatory charac-
teristic)

slope of voltage-common electrode current at dc

time

t—1/2

time constant of selective system

normalized time constant of selective system

time constant of emitter autobias circuit

normalized time constant of emitter autobias circuit

time constant of common electrode autobias circuit

time constant describing the duration of synchronization process

amplitude transient time

phase transient time

frequency modulating period

RF voltage on varicap

current value of voltage

current value of selective system voltage

amplitude of voltage signal

the amplitude of direct signal

amplitude of & harmonic of voltage

amplitude of transmission signal

amplitude of reflected signal

radio frequency voltage

voltage amplitude at selective system

average amplitude of Usg

amplitude of converted signal

value of amplitude at steady-state point
complex amplitude (complex envelope) of voltage

complex amplitude of the voltage on selective system

voltage amplitude for 6 = 180°

modulating voltage

relative radial speed between radar and target

cosine and sine components of PAM

energy of selective system electric circuit in the absence of FM
dimensionless RF voltage on varicap

tangents to cutoff diagram

tangents to bias diagram

admittance of dispersion of ideal transformer
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control admittance abbreviated around reference frequency

abbreviated admittance

equivalent output admittance of oscillator (complex electronic
conductivity)

admittance of autobias circuit

symbolic admittance of input and common electrode autobias
circuits

symbolic admittance of selective system

symbolic admittance of selective system with modulation

complex active element Y-parameters averaged for first
harmonic

parameters of autodyne small-signal equivalent scheme

oscillator three-port circuit elements

complex impedance of load

polynomial coefficients of Ys¢ numerator

polynomial coefficients of o, decomposition in MacLaurin
series

polynomial coefficients of Yss denominator

polynomial coefficients of [3,, decomposition in MacLaurin
series

normalized modulating voltage

factor determined by slope of cutoff and bias diagram

law of signal frequency modulation

decomposition coefficient for constant component

decomposition coefficient for first harmonic

attenuation of selectivity system (small parameter)

central frequency shift of direct signal

frequency difference

frequency deviation (radian frequency)

peak frequency deviation

normalized capacitance controlling frequency

autodyne signal amplitude

parasitic amplitude signal

autodyne signal

cutoff angle of cosine impulse of current

frequency difference

wavelength in free space

modulation parameter

characteristic impedance

dimensionless time; reflected signal time delay relative to
transmission

initial value of delay

delay time in high-frequency circuit
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delay time in low-frequency circuit

delay time in feedback circuit

current value of phase of voltage signal initial phase of control
voltage u

contact potential difference of varicap material

phase of direct signal

phase of transmission

phase of reflected signal

phase of converted signal

initial phase shif’

phase shift caused by reflecting properties of target

initial phase of voltage ugs

magnetic flux; normalized amplitude of reflected signal

normalized frequency difference of synchrosignal; normalized
detuning

synchronization band

radian frequency

roots of system natural equation

natural resonant frequency of selectivity system (for single-tuned
circuit o, =) INITe )

oscillator fluctuations frequency

central frequencx of transmission

frequency for 6 =~ 180°

initial value of frequency around which FM is taking place

frequency at synchronization mode

frequency disturbance

Doppler frequency

normalized Dopypler frequency

modulation frequency

instantaneous frequency of converted signal

frequency deviation of converted signal
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intermediate, of converted signal, 12
modulated, 156
modulating function, 17
natural, 130
resonant, 127
restoration, 153
trim, 153

transmitted signal, 16,17
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Range resolution, 93 (see also Weighting)
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Ranging by:
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74
Ranging by:
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fixing instantaneous frequency of con-
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measuring of instantaneous frequency of
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control, 151
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synchro, 154
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processing, 89-121
definition, 89
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general description, 90
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